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PREFACE

This book is devoted to concurrent-up particle-fluid two-phase flow which
forms the basis of, among others, fluidization. Depending on operating
conditions and the properties of fluid and solids, the two-phase system
can be operated in either the so-called particulate or the aggregative
pattern. Particulate systems, such as L/S fluidization, can be analyzed
relatively easily since particles are discretely distributed in the fluid,
while the analysis of aggregative systems is complicated due to the pre-
vailing heterogeneity not only on the local scale but also on the overall
scale. To date, there has been no adequate account to either differen-
tiate the particulate from the aggregative pattern, or reconcile the two.
Are they really different or are they merely different phenomena of some
common mechanism? Why two distinct phases (particle-rich dense and
fluid-rich dilute) can coexist in an aggregative system, and why a series
of regime transitions, including the so-called choking, can occur? Such
questions have engaged the attention of both theorists and practitioners
for decades.

The object of this book is to provide a comprehensive understanding
of heterogeneous particle-fluid two-phase flow on the basis of two essen-
tial concepts—energy minimization and multi-scale analysis (EMMS).
These concepts are applied to the various possible structures of two
phase flow, designated under four categories—phase, regime, pattern and .
region—to describe both local and overall fluid dynamics. Differences in
phase structures are subject to the manipulable variables of operating
conditions, material properties and boundary conditions. The usual
fixed-bed/fluidization /transport notion is further characterized by the
corresponding designation PD/PFC/FD (particle-dominating / particle-
fluid-compromising / ﬂuid-dominating). Such an EMMS approach has
enabled the authors to elucidate some of the underlying mechanisms of
phenomena besides providing a method for the design and operation of
particle-fluid two-phase equipment: chemical reactors, heat and mass



transfer apparatus, pipelines for transporting or moving granular mate-
rials.

The book consists of five chapters. The first chapter introduces the
essential characteristics of particle-fluid two-phase flow, and proposes
the system designation as its primary framework. With these basic
concepts necessary for discussing fluid dynamics, Chapter 2 formulates
the EMMS model, by first describing the three scales of particle-fluid
interaction and the resolution of the energy consumption for particle-
fluid systems into what is necessary for suspending and transporting the
particles and what is dissipated, and then presenting the PD /PFC/FD
characterization. Chapter 3 gives the solution of the model and’presents
the results of computation dealing, in succession, with local fluid dynam-
ics (phases); dependency of local fluid dynamics on operating conditions
(regimes), and on material properties (patterns), and, lastly, overall fluid
dynamics, or spatial distribution of regimes (regions). Chapter 4 out-
lines significant experimental evidence for the EMMS model and other
relevant phenomena connected to particle-fluid two-phase flow. Follow-
ing up, Chapter 5 presents an example of simulating a typical two-phase
flow system—a circulating fluidized bed, to demonstrate the calculation
procedure for its whole flow field, and shows, as additional examples
of application, several new types of reactors designed according to the
principle of the EMMS model. This last chapter concludes the book
with prospects for further development. :

This book mainly focuses on regular aspects of particle-fluid two-phase
flow, while the irregular dynamics of such a heterogeneous system, which
is related to the dissipation process, has not been dealt with, and will
be relegated to future research.

As engineers, the authors have combined theory with empiricism, ex-
ploring new methodology and expounding the mechanisms of relevant
phenomena, and do not claim mathematical rigor. They therefore stand
ready to welcome criticism. In the course of completing their study,
they have received encouragement from Academia Sinica in the form of
financial assistance and a Natural Science Award. For that and assis-
tance from National Natural Science Foundation of China and China
Petrochemical Corporation, the authors wish to express their gratitude.
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Chapter 1

CHARACTERISTICS OF
PARTICLE-FLUID
TWO-PHASE FLOW

Particle-fluid two-phase flow can be operated in different directions—
vertical, horizontal, inclined, etc., while the particles and the fluid can
move concurrently or countercurrently with respect to each other. Of
these combinations, concurrent-up flow is the most common, and there-
fore forms the focus of this book.

When a fluid passes upward through a bed of particles at very.low ve-
locities, a certain fraction of the weight of solids is supported by the
drag of the fluid, and the system is said to operate as a packed or fixed
bed. With increasing fluid velocity, the ratio of drag to solid weight
increases, and reaches unity at a velocity called minimum fluidization
velocity Ups. At this velocity, the particles are buoyed by the upflow-
ing fluid and the bed of particles becomes liquid-like, or fluidized. The
simplest case, wherein the solids are fluidized but have no net upward
velocity, constitutes one of the most common and widespread applica-
tions for particle-fluid two-phase flow in chemical engineering, that is,
classical or low expansion fluidization.

At minimum fluidization, the particle-luid two-phase system is nor-
mally particulate, that is, “homogeneous”, with particles uniformly
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distributed in the flowing fluid. Beyond Uy, depending on the prop-
erties of the fluid and the solids, the particle-fluid system could either
become immediately aggregative, that is, showing a two “phase” struc-
ture consisting of a dilute phase segregated into rising bubbles in a sur-
rounding dense phase of an emulsion-like particle-fluid mixture, or re-
main particulate in uniform expansion through some fluid velocity range,
until bubbles appear at the so-called minimum bubbling velocity Uny.
Although the term “phase” usually refers to the state of aggregation of
matter—solid, liquid or gas—in the parlance of particle-fluid two-phase
flow, it is also traditionally used to denote the mode of distribution of
particles in their surrounding fluid. Thus, a “dilute phase” denotes a
particle-fluid mixture in which particles are sparsely distributed in the
fluid, and a “dense phase” denotes rather compact particles distribu-
tion, more or less in the form of an emulsion. A “two phase structure”
refers to the simultanesous presence of a dense phase and a dilute phase,
intermixed with each other in certain characteristic configuration. This
book adopts such a traditional terminology.

1.1 Particulate System

Liquid/solid (L/S) fluidization is generally considered particulate, be-
cause it appears uniform. However, it has been found that L/S flu-
idization could well be aggregative, as for the lead /water (Wilhelm and
Kwauk, 1948) or copper/water (Yu, 1986) system. As a matter of fact,
no L/S system ever achieves complete uniformity. Yet its very appear-
ance of uniformity has led to the concept of idealized fluidization of
complete homogeneity (Kwauk, 1973), analogous to the concept of an
ideal gas, for which the gas molecules occupy no volume and do not at-
tract or repel one another. Idealized fluidization, such as is approached
by most L/S systems, is characterized by smooth or uniform bed expan-
sion as shown in Figure 1-1, as if the _pa.rticle—ﬂuid mixture were an
elastic continuum stretching under the dynamic forces of augmented
flow. In idealized or particulate fluidization of monosized particles, the
slip velocity Usyp between the fluid and the particles is always lower
than the terminal velocity Uy of the individual particles, and particles
are discretely distributed in the fluid, that is, only one “phase” can ex-
ist. The fluid dynamics of such a system, expressed as the variation of
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voidage € with fluid velocity Ug, was first studied by Hancock (1937)
and then demonstrated by Wilhelm and Kwauk (1948) to be linear on
log-log plots, that is

Ug = Uten

Richardson and Zaki (1954) formulated sectionwise correlations of the
exponent n to the terminal Reynolds number Re; = dpU;/vs. With in-
creasing fluid velocity, the system expands smoothly as a “single phase”
from € = ens to € = 1 as Uy increases from Uys to Uy, as shown in
Figure 1-1. This correlation between € and Uy applies only to spherical
particles with a narrow size distribution. For particles with a wide size
distribution, the mean particle diameter must be used, as will be dis-
cussed in Section 1.4.1.

Bed Voidage

Liquid Velocity

Figure 1-1 Particulate Particle-Fluid Two-Phase Flow

Idealized fluidization is of basic importance in understanding the essen-
tial features of the complicated fluid dynamics of particle-fluid system,
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—_—

which can be resolved into simpler idealized subsystems—dense-phase,
dilute-phase and inter-phase, as will be discussed in Chapter 2.

1.2 Aggregative System

In gas/solid (G/S) fluidization, beyond the minimum fluidization veloc-
ity Uns for coarse particles, or beyond the minimum bubbling veloc-
ity Uy, for fine and graded powders, the particle-fluid system acquires
a “two phase” structure consisting of a dilute phase of discrete gas-
rich bubbles, and a continuous dense phase of solid-rich emulsion. The
voidage in the dilute bubble phase is near to unity, while the voidage in
the dense phase remains more or less constant and close to the voidage at
minimum fluidization ens. The preferential aggregation of the majority
of the solid particles into the dense emulsion phase led to the designation
of such a “two phase” operation as “aggregative.”

Fluidization was thus thought to comprise these two distinct species,
particulate and aggregative, and criteria were proposed to distinguish
particulate from aggregative fluidization, mostly on the basis of the
Froude Number (Wilhelm and Kwauk, 1948; Romero and Johanson,
1962). ‘

However, in actuality the demarcation is fuzzy rather than definitive
(Kwauk 1957). If the solid particles were made with smoother surfaces
and graded in size, especially with the incorporation of fines, G/S flu-
idization would be less aggregative and more particulate: bubbles would
be smaller and more numerous, and at higher gas velocities it would even
be possible to alter the shape of the bubbles so much, especially with
recycling of solids from the top to the bottom of the fluidized bed, as to
produce a new two phase structure with strands or clusters of solids as
a discontinuous phase, dispersed in a dilute continuous phase of sparse
solid particles population. This new high-velocity phenomenon is called
“circulating fluid bed” (Reh, 1971), or “fast fluidization” (Yerushalmi,
Turner and Squires, 1976), which is generally characterized by the si-
multaneous presence of a dilute region at the top and a dense region at
the bottom of the retaining vessel (Li and Kwauk, 1980).
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Apparently there is a phase inversion from the bubbling mode, where gas
aggregates into rising cavities, to the “fast” mode, where solids aggre-
gate into strands or clusters. Thus, the original concept of aggregative
fluidization is resolved into gas aggregation at low velocities and solids -
aggregation at high velocities (Kwauk, 1980). The transition from the
one to the other mode, or the “phase inversion” in aggregative fluidiza-
tion, is diffuse rather than clear cut, accompanied by a high degree of
deformation of bubbles with simultaneous dissection of the dense phase
sporadically into primordial strands or clusters. This transition corre-
sponds to what is often referred to as “turbulent fluidization” (Lanneau,
1960; Keohe and Davidson, 1971).

With increasing gas velocity, the aggregative system thus encompasses
a series of phenomenon—bubbling, turbulent and fast fluidization—to
culminate in dilute transport at a velocity Upy corresponding to the so-
called saturation carrying capacity K*, as shown in Figure 1-2. At U,
the two-region fast fluidization consisting of a dilute region at the top
coexisting with a dense region at the bottom, as shown in Figure 1-2,
terminates all of a sudden with the onset of single-region dilute trans-

Idealized
Transport Transport

‘Bed Voidage

Figure 1-2° Aggregative Particle-Fluid Two-Phase Flow
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port. This sudden reversion is characterized by a jump change in voidage
and bed structure. In dilute transport, a G/S system demonstrates the
pseudo-homogeneous nature of any usual L/S system. At last, at still
higher gas velocities, idealized homogeneity becomes evident as particles
begin to behave discretely.

The aggregative system is characterized not only by the so-called local
heterogeneity—two phase structure, but also by the distribution of the
heterogeneous phase structure over both time and space. The time de-
pendency of flow structure appears in the form of phase alternation at
a local position, that is, the alternate dissolution and reformation of the
two phases. This contributes to the chaotic nature of the system. The
space dependency of flow structure prevails in both the axial and radial
directions, showing the co-existence of a dilute region at the top and a
dense region at the bottom, as well as a dilute region at the center and
a dense region near the wall of the retaining vessel. Spatial distribution
causes intensive backmixing of both fiuid and particles, thus affecting
fiuid-particle contacting in the system, and therefore, impairing the per-
formance of a reactor. Heterogeneity in aggregative systems gives rise
to a feature distinct from particulate systems—much higher mean slip
velocity U; between the fluid and the clustered particles than the termi-
nal velocity Uy.

For any G/S system, as it expands with increasing gas flow, the volume
fraction of the dense-phase f decreases while bubbles grow in size and
increase in number, though the intraphase structures of the dilute and
dense phases remain essentially unchanged. Thus, expansion of-the G/S
system could be construed as to reside mainly in a change in the volume
fraction of the dense-phase f. A phase inversion can therefore be consid-
ered to take place in turbulent fluidization when f reaches about %, that
is, half dense and half dilute, making it difficult to identify whether the
dense or the dilute phase is continuous (Grace, 1985). Beyond this point
of f = %, the dilute phase gradually becomes the continuous phase as
fast fluidization takes over, while the dense phase is now shredded into
particle clusters or strands.

Liquid-solid fluidization, on the other hand, is essentially all particulate
throughout the fluid velocity range, except for large, heavy particles.
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Between the G/S and L/S systems, expectation for provision of exper-
imental evidence for diminishing bubbling and fast regimes, lies in the
use of fluids having properties bridging the gap between gases and lig-
uids, e.g., fluids near their critical points (Kwauk, 1957).

It can be seen that a phase structure could be confined locally to fairly
small regions in a particle-fluid system, such as a bubble or a cluster,
or could be extended through much larger regions in the radial or axial
direction of the confining vessel. Local heterogeneity is attributed to the
intrinsic instability of a particle-fluid system, while extended or overall
heterogeneity results from the boundary conditions of the equipment,
e.g., walls, inlet and exit configurations in relation to overall stability,
as will be discussed in Section 3.7.

1.3 System Designation

Figure 1-3 shows various possible structures of two-phase flow and their
change with operating parameters and material properties. For describ-

ing such a complicated phenomenon, the following system of designation
is proposed by Kwauk (1990).

The term meso-heterogeneity denotes local heterogeneity describing lo-
calized coexistence of PHASES, the solid-rich dense phase and the
fluid-rich dilute phase, due to the primary instability inherent in fluid-
particle systems. The configurations of phase combination which de-
pends on operating parameters, notably fluid velocity, is described by a
spectrum of REGIMES: particulate expansion, bubbling fluidization,
turbulent fluidization, fast fluidization and dilute transport, as occur in
gas fluidization of fine powders. The constitution of the regime spectrum
is subject to variations in material properties, that is, not all the regimes
mentioned above would show up for systems composed of different ma-
terials. For instance, particulate expansion regime is seldom detected
for large particles fluidized by a gas, and L/S systems always fluidize
particulately. Such a material-dependent change of regime spectrum is
described as PATTERNS.
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The term macro-heterogeneity denotes overall heterogeneity describing
segregation into dilute and dense REGIONS in different parts of the
equipment due to secondary instability of fluid-particle systems caused
by equipment configuration and other factors. For fast fluidization in a
cylindrical vessel, for instance, macro-heterogeneity is resolved in two
dimensions:

Axial:  dense region at the bottom surmounted by
a dilute region at the top.

Radial: wall region of low voidage surrounding
a core region of high voidage.

In summary, the proposed system of designation comprises the following
four categories:

Phase — state of particle aggregation (meso-heterogeneity)
continuous discontinuous
et e, e e
dense — emulsion or clusters
dilute — broth or bubbles
Regime —  configuration of phase combination dependent on operat-

ing parameters: bubbling, turbulent, fast, transport

Pattern — constitution of regime spectrum dependent on material
properties: )
bubbling/transport for coarse G/S systems;
particulate/bubbling/turbulent/fast /transport
for FCC catalyst/air systems;
particulate only for most L /S systems

Region —  spatial distribution of phases dependent on boundary

conditions (macro-heterogeneity):
top and bottom; core and wall

Figure 1-3 is also a methodological scheme directed toward a compre-
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hensive understanding of concurrent-up fluid-particle two-phase flow, in-
dicating the relationships, or interdependencies between the above four
categories: phase, regime, pattern and region and the three independent
factors dominating the system—operating parameters, material proper-
ties and boundary conditions. It provides the very framework in which
this book is organized. Notations in Figure 1-3 will be further explained
in the succeeding chapters.

1.4 Parameters for Particle-Fluid Two-Phase
Flow

To describe the complex phase structures in particle-fluid two-phase
flow, Figure 1-4 shows a system of parameters which are further defined

De
'/ e\
' —I; %

o]
g
Dilute

Dense-Phase—1 .

ﬁc-f =
S a
k-] g
HIEE
=
Dilute-Phase—1~ . £ g
& 1-f N : g
a

pr, By f ﬁppvdp
1 Ua=Gs/ pyp

Figure 1-4 Heterogeneous Flow Structure in Particle-Fluid
Systems and Related Parameters
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in Table 1-1. These parameters can be grouped into three types: in-
dependent, dependent and characteristic, as will be described in this
section.

1.4.1 Independent Parameters

Independent parameters are those which can be changed at will by de-
sign and in operation, and the dynamic states of particle-fluid systems
will follow. They usually consist of material properties, operating con-
ditions and boundary conditions.

Material Properties

Material properties include fluid density pf, fluid viscosity ug, particle
density p, and particle diameter dy, which are process-independent.

Since most particles handled in engineering are multisized, a character-
istic mean diameter has to be defined. The most commonly used mean
diameter is the so-called surface-to-volume mean diameter defined as

_ M
ds = (Z :B,'/d,')_l

=1

which is dependent only on size distribution without consideration of
the interaction between the particles and the fluid, and therefore causes
deviation in flow calculations. In order to reasonably represent the fluid
dynamic equivalence between multisized particles and monosized parti-
cles, the interaction between particles and fluid, in addition to geometry,
needs to be considered, and the following fluid dynamic mean diameter
d is therefore defined for particles in free fall (Li et al., 1991b)

rd  — rzzprg
g(Pp‘Pf)T-—CDT 5

If the diameter on the lefthand side of the equation is summated over
all the particle sizes for their gravity effect, and the righthand side, for
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their drag forces, then the above equation becomes

Wd3 —pndp piUZ
o(on — o) 25 = TR0 1S

where Ex is the mean diameter for calculating gravity, while dp is the
mean diameter for calculating drag force, for which Cp, is related to dp.
Combining these two equations, we get

&zL

_Ob
533%

For gravity equivalence, in the case of multisized particles
v 1rd3 M M 7ds
— Pp9 Z ni= nippg—-

=1
from which

_ M M
= Q- nidd)/ Y
i=1 i=1

and for drag equivalence,

2 2
DWdef gzn1 ZCD‘ 'ﬂ'd pr

=1
from which

= (Z Cp,d2n:)/(Cp Z n;)

i=1

Substituting E% and 335 into the expression of d, we get the so-called

fluid dynamic mean diameter

. M
E = ‘GD/ Z CDixi/d‘i

i=1
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Computation of d according to the above definition calls for an iteration
process. It should be remembered that the value of d is subject not only
to particle size but also to flow.

It can be shown that d takes to a minimum at very low Reynolds number
(Rep < 2 for all particles), at which Cp = 24/ Rey, that is,

_ M
dmin = (Y zi/d?)0®
=1

With increasing Reynolds number, d increases from minimum dpmi, to
maximum dpax at high Re, for which

_ M
dmax = (Z zi/d_i)-l

=1

This is identical to the surface-to-volume mean diameter d; mentioned
at the beginning of this section. The gradual transition from dmin to
dmax is shown typically in Figure 1-5, computed for the particular sys-
tem glass/air (dy = 7.2556mm, d2 = 4.255mm, d3 = 1.480mm and
z) = 22%, 7o = 33%, z3 = 45%). It is thus clear that for fluid dy-
namic equivalence, ds can be applied only to large particles and/or to
high fluid velocities corresponding to Rep > 2000.

In addition, Archimedes number Ar is usually used to represent the
integrated effect of material properties of both fluid and particles (Reh,
1971), formulated as

d3gp:(pp — pt)
Ar = P——z'_
B

Operating Conditions

Configuration of phase combination in particle-fluid two-phase flow de-
pends on operating conditions which include superficial fluid velocity
and superficial particle velocity, defined respectively as
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U = total fluid mass flow rate over the overall cross section
&£ (cross—sectional area)(fluid density)

U total solid mass flow rate over the overall cross section
4 =

(cross-sectional area)(solid density)

As defined above, Ug and Uy are independent of each other, and they
differ from their corresponding actual velocities Ug/e and Uy/(1 — €)

which vary with the dependent parameter ¢.

2.5 T T l T l
- M -1
dmx=(le/dl) l
=)
24 J\ |
]
£ 23 [ = = (< —
~ a~c,/(xc, x/a)
§ i-t
: |
5]
2 22
|
=
M -0.5
7 2
2.1 d"i'=(,.z:|x'/d')
2
0.001 0.01 0.1 1.0 10 100
. Gas Velocity Uy (m /'s)
1 1
- 1000 3o

Corresponding Reynolds Number Re , =—F

Ve

Figure 1-5 Fluid Dynamic mean Diameter of Multisized Particles

Increases with Increasing Fluid Velocity
(glass beads/air: d; = 7.255 mm, d3 = 4.255 mm

d3 =148 mm; z; : 22 :73=2:3:4)
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Boundary Conditions

Boundary conditions affecting the distribution of regions in space, are
equipment-related external constraints, which generally consist of the
retaining wall, entrance and exit configurations and the imposed pres-
sure drop AP,y over the particle-fluid two-phase system.

Wall effect gives rise to radial heterogeneity. Although boundary condi-
tions were established for various models (Soo, 1989; Ding et al., 1992;
Ding and Gidaspow, 1990), it is still considered necessary to measure
relevant parameters near the wall, such as fluid velocity, particle velocity,
void fraction and so on. Inlet and outlet effects are even more difficult
to generalize, and will therefore be discussed only in a qualitative sense.

The imposed pressure drop APy, is a global factor related to the effects
of the solids inventory, the resistance of the solids circulation loop and
the configuration of the system. It plays an important role in determin-
ing axial voidage profiles (Weinstein et al., 1983), which, according to
operation, fall into three modes: dilute region only, dense region only
and both regions coexisting in a unit. Its effect will be discussed in
Chapter 3.

1.4.2 Dependent Parameters
Figure 1-4 shows the eight principal dependent paraméters in a gen-
eralized concurrent-up particle-fluid two-phase system, the local state

of which can be described by some functional relationship between a
dependent parameter vector X(r) in terms of these eight parameters:

X(T) = {Ef("‘), Ec(r)a f(’l‘), Uf(r)’ Uc(’f‘), I(T), Udf ("')» Ua, (1’)}

These eight dependent parameters will be described below.

Particle and Fluid Velocity

Various average velocities can be derived as shown in Table 1-1:
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® local average fluid velocity:

Ug(r) = Us(r)(1 = f(r)) + Uc(r) f(r)

® local average particle velocity:

Ua(r) = Uas(r)(1 = f(r)) + Usc(r) f(r)

from which the corresponding cross-sectional average velocities can be

defined:

2 R
Ug = -ﬁfo Ug(r)rdr

2

R
Ug = 717/0 .Ud(r)rd'r

Although in conventional voidage measurements time-averaged signals
normally yield average bed voidages, however, in velocity measurements
time-averaged signals are not true responses of Ug(r) or Uq(r), due to
disparities of velocities and voidages in the dilute and dense phases, as
will be discussed in Chapter 4, and therefore flow structure must be

considered in analyzing the signals. This means that simultaneous mea-
surement of velocity and bed density has to be conducted.

Voidage

Voidage represents the degree of expansion of particle-fluid systems, de-
fined as

(total volume) — (volume occupied by particles)

Voidage =
owlage total volume

For heterogeneous particle-fluid systems, a variety of voidages, with re-

spect to phases and regions, is employed for describing their complicated

structures. Local voidage in the dense-phase e.(r) and local voidage

in the dilute-phase £¢(r), are the two basic voidages from which other
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voidages are derived:

e local average voidage:

(r) = ee(r) f() + x(r)(1 = £(r)

e cross-sectional average voidage:

__ 2 (R
E= —}2—2‘/(; e(r)rdr

e global average voidage:

o o H*hdh
E-ﬁ/o g(h)

Usually Z and ¥ are calculated from measured pressure drops, while mea-
surements of (), e.(r) and ¢¢(r) are much more delicate due to difficulty
in calibration as will be discussed in Chapter 4.

Phase Structure

The dependent parameters, [(r), for the dimension of a particle cluster,
and f(r), for the volume fraction occupied by the dense phase, are de-
signed to describe the phase structure of particle-fluid systems together
with e.(r) and e¢(r). Among others (Yerushalmi and Cankurt, 1979;
Subbarao, 1986), a correlation for the size of a particle aggregate I(r)
was proposed by Li (1987) and Li et al.(1988c) with the assumption
that /(r) is inversely proportional to the input energy. Details will be
introduced in the next chapter.

It should be understood that I(r) is used fictitiously as an equivalent
dimension for calculating the interaction between the dense and dilute
phases, rather than a parameter to represent the real size of a cluster.
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1.4.3 Characteristic Parameters

Characteristic parameters are those which are not related directly to op-
erating and boundary conditions, but depend mainly on material prop-
erties.

Drag Coeflicient

Dhue to the heterogeneous structure in particle-fluid two-phase flow, three
drag coefficients are needed for calculating multi-scale interactions be-
tween particles and fluid, as listed in Table 1-1. Drag coefficient for
single particles can be calculated for Re, < 1000 (Flemmer and Banks,
1986) as

Cp, = 24/ Rep, + 3.6/Reg'313

and for particles in homogeneous suspensions (Wallis, 1969) as

Cp = Cp,e™*"

Although particles in two-phase flow are not uniformly distributed, the
dense and the dilute phases can be considered, each in its own, as uni-
form suspensions, and the global system can thus be regarded as to
consist of dense clusters dispersed in a broth of sparsely distributed
discrete particles, as shown in Figure 1-4. The above correlations will
therefore be used respectively in the dilute and the dense phases, for
calculating micro-scale fluid-particle interaction, and also for evaluating
meso-scale inter-phase interaction between clusters and the broth, as
shown in Table 1-1, for Cp_, Cp, and Cp;,.

Terminal Velocity

The terminal velocity U, of a particle is also called its free falling velocity.
It is the maximum velocity which a single particle eventually reaches
while falling down freely in a still fluid, or the minimum velocity for a
flowing fluid to carry this single particle upward. The value of U; can
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be derived from force balance between the gravity of a particle and the
drag exerted by the fluid, that is,

nd3 d2 U2
p(pP pf)g = CDo 4 pfzt

therefore,

U, = (4gdp(pp - pf))°'5
3p:Cp,

Minimum Fluidization Velocity U, and Minimum Bubbling
Velocity Uy,

Minimum fluidization velocity is the lowest fluid velocity at which a
particle-fluid system starts to fluidize, which can be calculated from
+ (Kunii and Levenspiel, 1969)

1.75 demfPf)z + 15001 — eme) dpUnmtpr _ d3pe(pp — pr)g

bsd " g P2ed ¢ I, p2

where e, is the bed voidage at minimum fluidization which depends
on the physical properties of the particles and their mode of packing,
and ¢, is the shape factor. Without knowing ¢s and ens, Uns can be
approximated as (Kunii and Levenspiel, 1969)

for small particles (Rep < 20)

d2(pp — Pr)g

U =
mf 1650u¢

for large particles (Re, > 1000)

y2. _ doles = p0)g
mf 24.5p¢

A extensive review on Uy was made by Couderc (1985), listing a variety
of correlations for Upyy.
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Minimum bubbling velocity Umpp is defined as the fluid velocity at which
a particle-fluid system starts to bubble. This velocity is difficult to mea-
sure, especially for Class A powders, because of the inherent instability
of the system when it bubbles. For large particles, Upy, is considered to
be equal to Uys. A typical correlation for calculating Up,, is (Abraham-
sen and Geldart, 1980)

Umb _ 2300p912619-5%exp(0.716Q2)
Ut 3‘:-8 g0954(p, — py)0-934

where Q is the fraction of fine particles smaller than 45 pum. This tran-
sition will be further discussed in Chapter 4.

Saturation Carrying Capacity

Saturation carrying capacity K™ is the critical flux of solids flow corre-
sponding to the transition from dense-phase fluidization to dilute-phase
transport, at which these two fluid dynamic states coexist. This is often
called “choking.” Though much attention has been paid to measur-
ing K*, resulting in a number of correlations (Briens and Bergougnou,
1986; Satija et al., 1985 and Yang, 1983), for example (Knowlton and
Bachovchin, 1975),

Ut vo.5 Pp0.3a7, K *dp 0.214, Dp \0.246
o =9.07 Ll - . o.
(G2 (B2 )07(= =024 (32,

its underlying mechanism is still not understood, as will be discussed in
Chapter 4.

1.4.4 Derived Parameters
Other parameters in Table 1-1, exclusive of those discussed here, can be

formulated as functions of the above parameters and are therefore called
derived parameters which will be dealt with wherever they arise.



Chapter 2

FORMULATION OF THE
ENERGY-
MINIMIZATION

MULTI-SCALE (EMMS)
MODEL

For very dilute particle-fluid systems in which particles are discretely
distributed, invoking the conditions for the conservation of mass and
momentum normally suffices to define its fluid dynamic states, because,
as the traditional theory. expects, it always operates in a single state.
The methodology of dealing with dilute systems has been inherited,
though regrettably, in studying dense particle-fluid systems which are
characterized by structural heterogeneity and regime multiplicity, for
which some additional constraints need to be specified. ‘

An appropriate understanding of particle-fluid two-phase flow rests on an
adequate analysis of the local fluid dynamics corresponding to the scale
of bubbles or clusters, as well as the overall fluid dynamics corresponding
to the scale of the retaining vessel. As shown in Figure 1-3, local fluid
dynamics, designated as phases, is rooted in the intrinsic characteristics
of particle-fluid systems, whereas overall fluid dynamics, designated as
regions, depends on geometrical boundary conditions. Any specific local

23
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fluid dynamic state in a system is subject to the constraints of overall
fluid dynamics, whereas every point of the overall system has to satisfy
the constraints of local fluid dynamics.

As the basic part of this book, this chapter will deal with the phases
in particle-fluid two-phase flow by developing a mathematical model to
quantify local fluid dynamic states. In this analysis, any global particle-
fluid two-phase system is considered to be composed of a binary mixture
ofa g'as-rich dilute phase (bubbles or broth), and a solid-rich dense phase
(emulsion or cluster) (Kwauk, 1980). These phases, in combination, give
rise to structural heterogeneity and regime multiplicity. This analysis
will reveal the insufficiency of the conditions for the conservation of
mass and momentum alone in determining the fluid dynamic states of
heterogeneous particle-fluid systems, and calls for a methodology differ-
ent from what is used in analyzing dilute uniform flow. For this purpose
the concept of multi-scale interaction between particles and fluid and
the method of energy minimization are proposed.

2.1 Methodology for Modeling Particle-Fluid
Two-Phase Flow

There are two principal approaches to formulate particle-fluid two-phase
flow: the pseudo-fluid model and the two-phase model.

2.1.1 Pseudo-Fluid Approach

The pseudo-fluid approach inherits the methodology for analyzing single-
phase fluid flow, and considers a fluid-particle system to conmsist of k
distinct fictitious fluids with interaction between each other. The sim-
plest case is called the one-fluid model, that is, k = 1, assyming that
particles are distributed in the fluid discretely. It was used for modeling
voidage distributions in fast fluidized beds (Li and Kwauk, 1980; Zhang
et al., 1990).

More popular pseudo-fluid model is the so-called two-fluid model, that
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is, k = 2, in which the particle phase is considered as a fictitious fluid,
and separate fluid dynamic equations are established for both the par-
ticle phase and the fluid phase (Soo, 1967; Jackson, 1963; Grace and
Tuot, 1979; Batchelor, 1988; Gidaspow, 1986; 1989; Arastoopour and
Gidaspow, 1979; Yang, 1988; Ding and Gidaspow, 1990; Bai et al., 1991;
Militzer, 1986; Zhou, 1991; Yang, 1991; Liu, 1993).

For considering radial heterogeneity in a two-phase system, the pseudo-
fluid model is simultaneously applied to the core dilute region and the
wall dense region, resulting in the so-called two-channel model (Naka-
mura and Capes, 1973; Bai et al., 1988; Yang, 1988; Ishii et al., 1989).

Although the pseudo-fluid approach can be strictly formulated, it is
hardly capable of describing the flow structure difference between the
dilute phase and the dense phase, that is, the scale cannot reach that of
individual particles, and regime transitions, related to inflective changes
of flow structure, can not be treated.

2.1.2 Two-Phase Approach

The two-phase approach is based on the phenomenological nature of
particle-fluid flow which is two-phase in structure. It considers a het-
erogeneous system to consist of two different phases, a solid-rich dense
phase and a gas-rich dilute phase, for each of which mass and momen-
tum conservation is analyzed with consideration of interaction and ex-
change between the two phases. The two-phase model was proposed
for bubbling fluidization (Toomey, 1952; Davidson, 1961; Grace and
Clift, 1974) to analyze the bubble phenomenon, and was then used for
calculating cluster diameter (Yerushalmi et al., 1978; Subbarao, 1986),
and analyzing local flow, structure (Hartge, 1988) in fast fluidized beds.
To account for the stability of two-phase structure in fast fluidization,
Li (1987) and Li et al.(1988b; 1990) proposed the energy-minimization
multi-scale (EMMS) model, considering that mass and momentum con-
servation alone is not sufficient for determining the flow structure in
fluidization, and that an additional condition is needed.

The two-phase approach can be used to analyze the interaction between
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the fluid and individual particles, though it is not convenient for an-
alyzing turbulent and time-dependent behavior of the system. Gener-
ally speaking, and in the authors’ opinion, the pseudo-fluid approach is
more suitable for dilute two-phase flow, while the two-phase approach,
for dense fluidization. Combination of the two-phase model with the
pseudo-fluid model may even be a more effective approach.

This pook is based on the two-phase approach, focusing attention on
the specific aspect of the heterogeneous flow structure of particle-fluid
two-phase flow.

2.2 Three Scales of Interaction

To account for the intrinsic characteristics of particle-fluid two-phase
flow, the particles and the fluid are considered to interact with each
other on both a micro-scale and a meso-scale level to produce local or
meso-scale heterogeneity (phases), and the overall fluid-particle system
interacts with the equipment boundaries on a much larger scale to pro-
duce macro-scale heterogeneity (regions).

Micro-Scale

Micro-scale interaction is the smallest scale of interaction between the
particles and fluid in the system, corresponding to the size of the con-
stituent particles and prevailing in both the dense phase and the dilute
phase. This interaction, expressed as force acting on a single particle,
can be written for the dense phase:

nd3 piUZ

F, dense — CDC 4 2

and for the dilute phase:

7rd2 fU2
F, dilute = CDf __4_p 22_Sf



Particle-Fluid Two-Phase Flow 27

Meso-Scale

Meso-scale interaction is concerned with the interaction between clusters
and the dilute-phase broth surrounding them, or the interaction between
bubbles and the emulsion in which they exist. For the former, this
interaction is expressed as force acting on a cluster by the broth through
the so-called interphase

w2 peU2
Fyux = Cp,——=2
bulk D; 4 2
where U,; is the superficial relative velocity between the clusters and
the dilute-phase broth as defined in Table 1-1. Here, for simplicity, the
interaction between the particles in the clusters and the particles in the
broth is neglected.

Macro-Scale

Macro-scale interaction occurs between the global particle-fluid system
and its boundaries, resulting in macro-heterogeneity. Macro-scale inter-
action generally extends in both the radial (lateral) and axial directions.
Radial macro:scale interaction is caused by wall effect leading to radial
distribution of parameters. Axial macro-scale interaction originates pri-
marily from APyp and inlet and outlet effects. The imposed pressure
drop APy, also governs the shape of axial profiles. Macro-scale interac-
tion underlies the dependence of meso-scale fluid dynamics on location,
and it will be discussed in Chapter 3 in connection with overall fluid
dynamics. "'

In effect, such a multi-scale analysis resolves a macro-scale heteroge-
neous system into three meso- to micro-scale subsystems—dense-phase,
dilute-phase and inter-phase. Thus, modeling a heterogeneous particle-
fluid two-phase system is reduced to calculations for the three lower-scale
subsystems, making possible the application of the much simpler theory
of particulate fluidization to aggregative fluidization and the formulation
of energy consumptions with respect to phases (dense, dilute and inter)
and processes (transport, suspension and dissipation).
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2.3 Energy Analysis and System Resolution

2.3.1 Specific Energy
Per Unit Mass of Particles

The total enérgy associated with a flowing particle-fluid system, ex-
pressed as power per unit mass of solids, Nt, is considered to consist
of the sum of two portions, one used in suspending and transporting the
particles N, and one purely dissipated in particle collision, circulation,
acceleration, etc., Ng. And Ny can be further split into that for parti-
cles suspension N, and for transport N, and can also be apportioned
between the dense cluster phase, the surrounding dilute phase and in-
teraction between the two, that is,

NT = Ng + Nd
Ngt = Ns + Ny
= (Nst)dense + (Nst)dilute + (Nst)inter

In fact, N; which results from the slip between the fluid and the particles,
is also dissipated because it does not contribute to the upward motion
of the particles, making the total dissipated energy equal to N + Ng.
However, this portion of dissipated energy is responsible for retaining
the potential energy of the particles which are suspended in the system,
that is, keeping the system expanded, and is therefore, different from
the purely dissipated energy Ny.

The average voidage of the system ¢ is formulated additively from the
dense and dilute phases as

e=ecf+er(l1—-f)
If wall friction is neglected, then

Np= 2PUs _ (1—c)(pp —pr)gUs _ pp - Piyg
(1—-€)pp (1-¢)pp Po
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The three components of Ny in the three subsystems can thus be cal-
culated as follows:

1
(Nst)denae = mp_pAPdenmUcf
1
(NVst)ditute = (i—:-e-)—p‘APdiluteUf(l - 1)
o - .
1
(Nst)inter = WAPincerUf(l - f)
D

Substituting the above and from the expressions for A Pyepse, APdilute
and A Piter in Table 1-1, we get

1
Nst = Po [APdenseUcf + A-PdiluteUf(]- - f) + AF’interUf(l - f)]

(1-¢)

- 4(1 - e)pp [CDc dp prSCUCf + CDf dp prstf(]‘ f)

+ Cp, inUfiUf(l - f)]

By difference, the dissipated energy N4 can be deduced from Ny and
Nr:

N4 = Nt — Ngy = Nt — (N + V)

where N, the energy for transporting the particles at a flow rate of G,
through a distance of (T:le)'p_p and related to unit mass of particles in
unit area, can be written as

N, = Yalep — pr)g
‘ (1-¢)pp

and then, again by difference, the energy for suspending the particles
can be calculated:
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Ns =Nst"Nt

The total energy consumption Nt has thus been resolved into its com-

ponents according to the constituent processes involved in particle-fluid
interaction.

Per I:Init Volume of Vessel

By multiplying the above energy terms by (1 — €)pp which is the total
mass of particles in unit volume, they are converted into the correspond-
ing energy consumptions with respect to unit volume of the retaining
vessel, that is,

Wt = Np(1 —€)pp
Wat = Net(1 — €)pp
We = Ny(1 - €)pp
Wa = Ng(1 - €)pp
Wy = Ni(1 —€)pp

Per Unit Mass of Fluid

Corresponding to N, energy consumption per unit mass of fluid can be
calculated by dividing W with ep; which is the total mass of fluid in unit
volume. For instance, the energy consumption per unit mass of fluid for
suspending and transporting particles is

Wt
eps

2.3.2 Characterizations of Energy Consumptions

Obviously, the different energy terms characterize different aspects of
particle-fluid two-phase flow, among which, those related to particle
suspension and transport are of importance in analyzing fluid-particle
interaction, and, in particular, for identifying system stability:



Particle-Fluid Two-Phase Flow 31

Ng:: characterizes the intrinsic tendency of particles toward an
array of the lowest interaction with the fluid;

We or v?v-“: represents the intrinsic tendency of the fluid to seek
flow paths for the lowest resistance to flow

2.3.3 System Resolution

According to the above energy analysis and using the symbols defined in
Figure 1-4, Figure 2-1 shows graphically how a particle-fluid two-phase

Q(Heat)

U,

£ ¢

€ +
ti e
U, Uy U,=0 U;=0
Two-Phase-Flow Suspension and Transport Energy Dissipation
A Y
Global System Constituent Sub System

Figure 2-1 System Resolution for Particle-Fluid Systems

system can be resolved into the suspension and transport (ST) subsys-
tem corresponding to N, and the energy dissipation (ED) subsystem
corresponding to Ny.

The beginning of this section has already shown that both Ngq and N
are dependent on vector X, that is, related to flow structure, while Nt
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is only subject to the independent parameter Uy, and therefore indepen-
dent of flow structure as long as the particles are suspended.

2.4 Momentum and Mass Conservation for the
ST Subsystem

Following Figure 2-1, Figure 2-2 shows the two steps used in analyzing
the ST subsystem. The first step shows the whole ST subsystem as a
combination of the two phases interacting with each other through an

Fipter = miFpuie 1

AP dilnlefFinter/ (l'f) APden’e
Uc U[ Udc Udf : Stepl
NASA .I.‘ I‘ 1.-}' ! s
th1e
Ut Udl‘ Uc Ugse
o. -—’
0 0
& f en(1-9) + + 0 0
1 + Step 2
. 0 "o
te
Ur Uy UL1-f) Uy
Dilute Phase Inter-Phase

Figure 2-2 Two-Step Resolution for ST Subsystem

interface—a dense phase with voidage £; and volume fraction f, and a
dilute phase with voidage £; and volume fraction (1 — f). The overall
fluid flow is split into two streams—U.f through the dense phase and
Us(1 — f) through the dilute phase, and the pressure drops due to fluid
flow in the two phases should be equal. The second step depicts the
interaction between the dense and the dilute phases as to take place
through an independent fictitious interphase between the clusters and
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the surrounding broth. The energy consumed in the ST subsystem Ng
is thereby resolved into the three constituent terms given in Section 2.2.

Nt = (Nst)dense + (Nst)dilute + (Nst)inter

This resolution of Ng; makes possible the formulation of the following
six equations on mass and momentum conservation:

1. Force balance for clusters in unit bed volume. The number of clusters
in a unit bed volume is m;, and the number of particles in the dense phase
in this volume is m.f. The fluid dynamic forces acting on these clusters
can be equated to their weight:

Mef Fense + Fouixmi = Fgm;

where Fyense and Fyyx were defined in Section 2.1, and Fj is the effective
weight of a single cluster, defined as

3
FS = _6—(1 - EC)(Pp - pi)g

Referring to Table 1-1, we get.

1-—-

3 € 3
Fi(X) = 3C0. 754 f + 300, 4 pU3 - (1~ ec)(py — pr)af = 0

2. Egqual pressure drop. As shown in Step 1 of Figure 2-2, the fluid flow-
ing in the dilute phase has to support the discrete particles it contains
as well as the clusters in suspension, and the combined forces result in
a pressure drop equal to that of the parallel dense-phase fluid flow:

APdilute + Finter/(l - .f) = APdense

l l |
miFgiiute + K bulkmi/ (1 -f ) = McFyense
parﬁcles : clusvters

- o

-~ [ —
dilute phase * dense phase
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from which,

Ef
——pU% +

1
F2(X) = CDf d
P

€

1 1
Cp, 7ptU4 — Cb,
1 a,

f
1-f

8. Particle suspension for dilute phase. The weight of particles in the
dilute phase is

mg Fyitute = (1 — €1)(pp — pt)g
from which

1—es
dP

Fo(X) = 322LCp,orl% — (1= e0)(pp — pr)g =0

4. Continuity for the fluid.
FyX)=Ug-Us(1 - f) - Ucf =0
5. Continuity for the particles.

FX)=Us—-Uss(1 - f) —Uacf =0

6. Cluster diameter. The diameter of a cluster ! is assumed to be .
inversely proportional to the energy input according to Chavan (1984):

K

energy input

where the input energy refers to that which is responsible for breaking
up the dense phase into clusters. At minimum fluidization, | — oo,
Therefore, the energy input (Ngt),s at minimum fluidization should be
subtracted from the total input N, thus leading to the expression:

K

|
Nst - (Nst)mf
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As Matsen (1982) mentioned for very fine particles, when the fluid ve-
locity is high enough for the voidage to reach 0.9997, all particles are
discretely distributed in the fluid, that is, clusters disappear, or | = d.
On the other hand, Wu et al. (1993) found that any system possesses its
own unique maximum voidage €max beyond which clusters do not exist.
When voidage reaches €payx, Nst is almost all consumed in transporting
particles at a solids flow rate of G, with hardly any energy dissipated,
that is, N; and /N4 can both be neglected. Therefore,

Ng = Nt =~ N

that is,
Ua(pp — Pr)g
No)lomeo . = 3\Pp ~ PE)G
(NVot)le=emax (= em)Pn
Thus, we get
d, = K
ToAE 2B (N g
-from which
| (s B — (Nat)m)
- Nst - (Nst)mf
where
- - Uqe
(Nat)oat = 2B (Ug)agg = 2P (U + =450 )g
Pp Pp 1= &me
leading to,
dp (2L — (U + P2m0)g)
FG(X) =1- _— T = =0
Ny - -Pp__ _ (Umf + _:.Emt‘.)g

Pp—Ps 1—€ems

The above equation shows that £yax depends not only on operating con-
ditions but also on material properties. For instance, its value for L/S
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systems can be much lower than those for G/S systems. Such a depen-
dency will be analyzed in Chapter 3 in combination with pattern change.

The six equations in F;(X) (1 = 1,2,...,6) described above in terms of
force balance and continuity, are, however, not sufficient to determine
the fluid dynamic state of a heterogeneous particle-fluid system, because
with these, multiple solutions would result among which only one is valid
to represent the stable state. An additional condition is needed to define
this solution.

2.5 Energy Minimization and the PD, PFC
and FD regimes

Minimizing the energy consumption for transporting and suspending
particles is considered to be this missing condition (Li, 1987; Li et al.,
1988b; 1988c; 1990). For steady single-fluid flow, Helmboltz proposed
the so-called minimum energy dissipation theorem for incompressible
Newtonian fluids with constant viscosity and negligible interior and con-
servative volumetric forces. This theorem states that the integral of the
energy dissipation over the whole flow field tends toward a minimum
under unchanged boundary conditions (Lamb, 1945). However, it has
not been extended to particle-fluid two-phase flow.

Azbel and Liapis (1983) analyzed gas/liquid systems with the assump-
tion that the available energy at steady state is at a minimum. Reh
(1971) mentioned the concept of the lowest resistance to fluid flow, and
in a somewhat alternate way, the so-called minimum pressure drop was
used by Nakamura and Capes (1973) in analyzing the annular structure
in dilute transport risers. By introducing small disturbances into uni-
form suspensions (Jackson, 1963; Molerus, 1967; Grace and Tuot, 1979;
Batchelor, 1988), it was verified that a uniform suspension is not stable.

It was indicated that there is no single and general variational theo-
rem for nonlinear steady-state dissipative systems (Gage et al., 1966).
Therefore, the stability condition for heterogeneous particle-fluid two-
phase flow has to be analyzed individually.
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In concurrent-up fluid-particle two-phase flow, the fluid tends to choose
an upward path with minimal resistance, while the particles tend to ar-
ray themselves with minimal potential energy. Stability of the two-phase
system calls for mutual coordination, as much as possible, between the
fluid and the particles in following their respective tendencies. This ap-
plies for all the three broad regimes of operation: fixed bed, fluidization
and transport. When neither the fluid nor the particles can dominate
the system, either has to compromise and yield its intrinsic tendencies
to that of the other in order to reach a stable state. However, if the
system is fully dominated by either the fluid or the particles, the intrin-
sic tendency of the dominant one will be satisfied exclusively, with full
suppression of that of the other.

If the fluid velocity is lower than Uy, that is, for the fixed bed, the
fluid-particle system is totally dominated by the particles, inasmuch as
the flowing fluid cannot change the geometric state of the system, which
is therefore fully particle-dependent, or particle-dominated (PD). In fact,
this regime belongs to single-fluid flow through a maze of complicated
channels composed of particles packed under gravity, and the theory of
single-phase flow can be used.

When fluidized, at velocities between Ups and Uy, neither the particles
nor the fluid can dominate the other in displaying either’s tendency ex-
clusively: they have to compromise each other in such a way that the
particles seek as much as possible minimal potential energy and the fluid
flows through them as much as possible with minimal resistance. In the
lower-velocity end of this range, the particles tend to aggregate into a
continuous dense-phase emulsion to admit excess gas to flow in the form
of bubbles, and as velocity increases toward the higher velocity end of
this range, the particles in the emulsion tend to shred themselves into
strands, which are discontinuous and dense-phase, distributed in a broth
of sparsely dispersed individual particles. On a macro scale, particles
tend to aggregate next to the wall of the retaining vessel leaving a core
of dilute solids concentration in the center of the vessel. Such two-phase
structures in this velocity range are but irrefutable phenomena of nature.
Evidently the particles, made mobile by the flowing fluid, react in turn
upon the fluid to affect its flow and velocity distribution. The fluid with
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its intrinsic tendency to choose an upward path with minimal resistance,
and the particles with their intrinsic tendency to array themselves with
minimal potential energy, seem to accommodate each other to form this
particle-fluid-compromising (PFC) regime (Li et al., 1992). This regime
is characterized by minimal energy per unit mass of the particles, Ny,
for which particles aggregate into clusters or emulsion, and also by con-
ditionally minimizing Wy and Wy /eps, for which the fluid flows with
relatively low resistance.

At higher velocities, beyond Up, all particles fed into the system are
transported in dilute phase out of the system without prolonged res-
idence, and without being able to aggregate themselves to the same
extent as the Ups ~ Uy range. Inasmuch as particle arrangement is
suppressed by the high-velocity fluid, this dilute homogeneous regime is
fluid dominated (FD) and is characterized by minimal energy either per
unit mass of the fluid, %‘fi, or per unit volume W,,. Under this condi-
tion, the fluid disperses the particles as discretely as possible in order to
achieve the lowest resistance to fluid flow. Maximal particles dispersion
corresponds to maximal energy expenditure per unit mass of particles,
that is, Ny, =max. Therefore, the stability condition for this regime can
be represented by W,y =min, (V?Vp‘fi) =min and N,y =max. The condition
Ny =max represents the ideal case of uniform, or particulate expansion
of particles for which Ny = max = L’P-p:pﬁUgg = constant.

Other relationships between the extrema of Ny, Wy and Wy, /eps will be
further discussed in Section 3.4 in connection with computation results.

The choice of the minimal energy to characterize different regimes—Ny;
for fluidization, and W, for dilute-phase transport—may sound e priori
or hypothetical, but as any hypothesis goes, its justification lies in how
well it is subsequently corroborated by fact, as will be demonstrated in
the latter parts of Chapter 3.

Transitions between these three regimes are distinct. PD/PFC transi-
tion occurs at the minimum fluidization velocity Uy at which the fluid
has acquired enough velocity to force the particles to move, thus en-
abling the particles to compromise with the fluid. Transition from the
PFC to the FD regime takes place at a fluid velocity corresponding to its
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saturation carrying capacity K* (“choking”), at which the fluid begins
to dominate the particles to realize the lowest resistance to flow. Details
about these transitions will be further discussed in Section 3.4.

With the transition from the PFC regime to the FD regime, Ny, charac-
terizing the intrinsic tendency of the particles, jumps from a minimum
to a maximum, while W, and W, /eps, both characterizing the intrinsic
tendency of the fluid, changes from a conditional minimum to a absolute
minimum, implying that the particles have lost their dominance over the
system and have surrendered to the fluid at the choking point.

2.6 The EMMS Model

By considering the set of six equations on mass and momentum con-
servation on the one hand, and the characteristic energy extrema for
stability of the three broad regimes of operation on the other, math-
ematical modeling for local fluid dynamics of particle-fluid two-phase
flow beyond minimum fluidization needs therefore to satisfy the follow-
ing constraints:

a) Ny = extreme (min for Gg > K*,
max for Gy < K*)

b) Fi(X)=0 (i=1,2,..,6)

C) U-cZO, UszO, UsiZO

Model LG (Local-General)

where Uy, Uss and Uy, stand for the slip velocities in the dense phase,
the dilute phase and the inter phase, respectively:

U =U. — ]?'dcec
Uy = Us — Uases
1—e¢f
: Ugcet
Usi = -—)1 -
U - £ - 1)
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This is a nonlinear optimization problem with eight variables and nine
constraints, called Energy-Minimization Multi-Scale (EMMS) model,
from which the parameter vector X and various energy consumptions
can be calculated without using any adjustable parameters.

For solving the EMMS model, the saturation carrying capacity K* has
to be determined to ascertain whether Ny should be minimized or max-
imized in Model LG (Local General), that is, to identify the transition
from the PFC regime to the FD regime. This transition is characterized
by the following equality (Li et al., 1992):

(Wst)PFC = (Wst)(N.t)min = (Wst)(N,t)m._x‘ec=smf = (Wst)FD

The physical implication of this transition will be explained with compu-
tation in Section 3.3, and its extension to macro scale will be discussed

in Section 3.7.



Chapter 3

SOLUTION OF THE
EMMS MODEL

In this chapter the EMMS model developed for analyzing meso-hetero-
geneity of the ST system will be solved both analytically and numeri-
cally, and then extended to both radial and axial overall fluid dynam-
ics, to provide a comprehensive description of phases, regimes, patterns
and regions, and of the role of operating conditions, material properties
and boundary conditions. Numerical solution of the EMMS model for
both local and overall hydrodynamics will be illustrated with the system
FCC/air (pp, = 930kg/m3,d, = 54um).

3.1 Identification of Solutions

3.1.1 Analytical Solution

Model LG (Local General) can be transformed into the so-called La-
grange’s extreme problem, that is, to find X which satisfies

L(X) = Nyt + AiF;(X) = extrema

or, stated alternatively, to solve the following set of equations with re-
spect to X and X; i =1,2,---,6):

41
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8L(X .
B0 (=128

Fi(X)=0 (i=1,2,---6)

It can be shown that there exist two solutions.

Solution 1, corresponding to f = 0 (f = 1.0 represents the same
solution as f = 0), can be expressed analytically as

F=0, Us=Uc=Ug, Ugc=Us=Us, er=€c=¢

The above conditions represent obviously the single-phased uniform state
of a particle-fluid system characterized by W, =min and € =max. And
the eight parameters in X degenerate into a form of a single-parameter ¢
which can be calculated from Ug and Uy by using the simple correlation
of particulate fluidization described in Section 1.1. That is, Model LG
is reduced to

wd3 wd? U2
__....E — . -— —4'7_—2 . pf__s__
& (o= pt) g = Cpoe 2 3
where
Cp, = 24/Re + 3.6/ Re®313
and U
Re = 2=
- Vf

What Solution 1 represents is an unstable state, unless the momentum of
the fluid is sufficient to fully dominate the particles as in the FD regime.

.In fact, even so, for any actual system operating in the FD regime, a
certain degree of particle aggregation (small clusters) still exists, until or
unless € > £max, such as is the case for high fluid velocity or for idealized
fluidization.

Solution 2, corresponding to f # 0, stands for the heterogeneous state
(two-phase) of a particle-fluid system characterized by Ng =min and
€ =min. This solution cannot be arrived at analytically, and calls for a
numerical method.



Particle-Fluid Two-Phase Flow 43

3.1.2 Numerical Solution

Model LG is a nonlinear optimization problem involving eight variables
and nine constraints, the latter consisting of both equalities and inequal-
ities, and can be solved by using the so-called GRG-2 algorithm which
codes the Generalized Reduced Gradient method, as will be explained in
the next section.

Computation of Model LG with GRG-2 shows that the solution cor-
responding to Wy =min or Ng; =max is the same as the analytical
solution for f = 0, whereas the solution N, =min defines the heteroge-
neous state of two phases (f # 0), which is stable in the PFC regime,
but not stable in the FD regime.

In solving Model LG by the numerical method, the transition from the
PFC to the FD regime is determined by calculating W, with respect to
both (Ngt)max and (Nst)min respectively, to find the point at which

(Wat)(Nat) min = (Wst)(Nae) max | ec=6me

which, as mentioned at the end of Chapter 2, defines the transition, and
hence the saturation carrying capacity K*. At this point, Wy shows an
abrupt change at an undifferentiable point on its curve, corresponding
to the physical phenomenon of “choking.”

This is but one typical case for identifying the transition between regimes
for particle-fluid two-phase flow. The relevant mechanism will be dis-
cussed in Section 3.4.

3.2 Algorithm and Computation Technique

3.2.1 Generalized Reduced Gradient Method

For solving nonlinear optimization problems with nonlinear constraints,
the generalized reduced gradient (GRG) method as proposed by Abadie
and Carpentier (1969) is an improvement of Wolfe’s reduced gradient
method (1963) which is applicable only to nonlinear programming prob-
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lems with linear constraints. The GRG method of Abadie and Carpen-
tier can be used to solve the following type of problems:

Minimize: f(X)

subject to: ¢;(X)=0, i=1,2,..,,NC
lbj S Z; S ubj, 1= 1,2,...,NN

where X = {z;,z2,...,NN} is a vector of variables, lb; and ub;(i =
1,2,...,NN) are given constants, for the lower and upper boundaries,
defining the feasible region of x;, NN is the number of variables, and
NC is the number of constraints including inequalities which can be
transformed into equalities by introducing nonnegative slack variables.
To illustrate this procedure, assume a problem containing the constraint

hi(X) >0
The slack variable s; is introduced to force equality:
hi(X)—s,=0
Then set its lower and upper boundaries
glb; =0; gub; = co

in order to set up the problem in the desired form.

As in the original reduced-gradient method of Wolfe, the set of variables
X = {z1,%2,...,zNN} is partitioned into two subsets: Xp comprising
NC basic variables (one for each constraint), and Xnp comprising N N-
NC nonbasic variables.

The basic idea of the GRG method is to eliminate Xp (as a function
of XnB) and consider the optimization problem only in terms of Xng.
Now,

df(X) = Vx,, f(X)TdXns + Vx, /(X)TdXs
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and
df(X) _ r dXp
Xos Vxp f(X) + Vxy f(X) Xng
where
T
of(X) af(X af(X
Vxa f(X) = ( 4P, L )
and
T
of(X) af(X af(X
VXNBf(X) = (ai(%m)’ 32(12\13),.“’ angés—z)vc)
Now, as

gi(X) =0, i=1,2,..,.NC

dgi(X) = Vx,p9i(X)TdXnp + Vx,0:i(X)TdXp =0, i=1,2,...

we have
dg(X) _ 99(X) (69(X))T dXs _
dXnB OXnNB 8Xp dXns
where
dg  _ ( dg: dgs dgnc )T
dXnB dXng' dXng' 7 dXnB
Thus

dXpg __( g )"1 g
dXn 8Xp X nNB

On substitution, we obtain
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_ Yoo _ _ T
VoS = T = U fOX) - Vo OO (

dg )‘1 dg
9Xp) 0Xnm

This last expression, called the generalized reduced gradient, permits

a reduction in the dimensionality of the problem, thereby transforming
the original problem into an unconstrained optimization problem.

Now, if f(X) has a local minimum at X*, it is necessary that

df (X*)
dXnNB

The search for X* begins at point X, and continues until

df(X) _
dXn

0,

at which a local minimum is thus found.

3.2.2 GRG-2 Algorithm and Its Application to the EMMS
Model

The EMMS Model in GRG-2 Format

The GRG-2 algorithm was developed by Lasdon and Waren (1978) on
the basis of an earlier version (Lasdon et al., 1978) for coding the GRG
method to solve the following type of optimization problem:

minimize or maximize: gnc+1(X)

subject to: gi(X)=0 (:=1,2,...,NE)
glby, < gr(X) < guby (k=NE+1,..,NC)
Ibj <zj<ubj (j=1,2,..,NN)

where glby and guby (k = NE + 1,...,NC) are the lower and upper
boundaries for gx(X) respectively. According to the above requirements
of the GRG-2 algorithm, the EMMS model can be converted into
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minimize or maximize : Ng(X)

subject to : F(X)=0 (:=1,2,..,6) Model LGa
lbj < Zj S ubj (l = 1, 2, ,8)

According to the physical nature of

X= {Ef,ec, f» Uf1 Uc’ l, Udf, Udc}

its feasible region can be set with its lower boundary and upper boundary
as follows:

Ib={ems, ems O, —00, —oo, dp, —oco, —oo}
ub = {1.0, 1.0, 1.0, oo, o0, o0, 00, 0}

If Ng(X) is minimized, the objective function is Ny (X) itself; if it is
maximized, the objective function must be — N (X).

Main Program for Calling GRG-2

For calling GRG-2, a main program has to be written for IBM-PC com-
patible computers, and the EMMS model has to be translated into a
subroutine named FNT(X, F, G), in which X represents the vector of
variables, F the objective function to be optimized and G the vector of
constraints, as follows:

MAIN PROGRAM

DIMENSION X0(NN),VARLB(NN),VARUB(NN),G(NC)
DATA VARLB/; (j=1,2,..,NN)/

DATA VARUB/ub; (j=1,2,...,NN)/

DATA NN,NC,NE,NL/....../

READ(5,*) X0

OPEN(2, file="“out.dat”, status="‘"new”)

CALL GRG2(X0,G,F,VARLB,VARUB,NN,NC,NE,NL)
STOP

END
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SUBROUTINE FNT(X,F,G)
IMPLICIT REAL*8(A-H,0-Z), INTEGER*2(I-N)
DIMENSION X(NN),G(NC)

F = N (X)
G(1) = F1(X)
G(2) = F2(X)
G(6) = Fs(X)
G(7) = U,
G(8) = —Uss
G(9) = -U,
RETURN
END

After running the program, the output results are stored in a file named
“out.dat”.

Kuhn-Tucker Optimality Condition

According to the optimization theory, X is not an optimal solution unless
it satisfies the Kuhn-Tucker condition expressed as

d(Net (X)) _ 0 Ibyg: < znB. < ubng.

dzNB; ! ’ ’
d(Nst(x)) >0 znNB, = IbNB.:

dzns; ’ ’
M <0 znB, = UbNB-

d:z:NBj ’ 7

. where %2 is the generalized reduced gradient of Ny (X) with re-
2

spect to the non-basic variable TNB;-

All.computation results in this book meet the above K-T condition.
The following is an example of the output for the FCC/air system at
Ug = 2.0 m/s and G, = 50 kg/(m? - s).
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VELOCITY OF GAS= 2.0000 m/s
FLOW RATE OF SOLID= 50.0000 kg/(m.m.s)

NUMBER OF VARIABLES IS 8
NUMBER OF FUNCTIONS IS 10

SPACE RESERVED FOR HESSIAN HAS DIMENSION 8

LIMIT ONBINDING CONSTRAINTS IS 9

ACTUAL LENGTH OF Z ARRAY IS 473

EPNEVWT = .1000E-03 EPINIT = .1000E-03 EPSTOP =
EPPIV =  _1000E-02 PHIEPS = .0OOO0OOE+00

NSTOP = 3 ITLIM = 10 LIMSER = 10000

IPR = O PN4 = O PN§ = 0O PN6 = O PER =

TANGENT VECTORS WILL BE USED FOR INITIAL ESTIMATES

VARIABLES

.1000E-03

O DUMP = 0
BASIC

THE FINITE DIFFERENCE PARSH USING FORWARD DIFFERENCE WILL BE USED

OBJECTIVE FUNCTION WILL BE MINIMIZED.
LIMIT ON HESSIAN IS o

OUTPUT OF INITIAL VALUES

GRG2GRG2GRG2GRG2GRG2GRG2GRG2GRG2GRG2GRG2GRG2GRG2GRG2GRG2G

RG2GRG2GRG2GRG2

SECTION 1 ~-- FUNCTION
FUNCTION
NAME

INITIAL

VALUE
8.6338826E+01
7.3294946E+01
. 2688780E-03
.0389118E-09
.4T11192E+01
1.1244903E+02
GF  1.0000000E+02
GF =7.9999955E+00
GF -1.8198028E+02
OBJ  2.3017536E+01

=
o

O WO N O WN M-

STATUS TYPE

ok

%

.o *Rk
EQ

ok

ey

ek

EBBEBEB88

g

SECTION 2 -- VARIABLES
VARIABLE
NAME

.

INITIAL
VALUE
.S000001E-01
.0000000E-01
.4711187E-01
.3403692E+00
.2698014E-02
.1670364E-01
.3033890E-02
.6269802E-01

.

STATUS

LL

b= OO
[}
OO0 W pPpOOGOM

DN WM

LOWER
LIMIT
0.0000000E+Q0
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+Q0
0. 0000Q00E+00
~1.0000000E+31
-1.0000000E+31
=1.0000000E+31

LOWER
_LIMIT

.0000000E-01
.000DO000E-01
.0000000E+00
.9999999E-05
.O00000CE+00
.9999997E-06
.O000000E+00
.OOOOOOOE+00

[ T SIS IR 7

UPPER
LIMIT
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000Q00E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00
0.0000000E+00Q

UPPER

LIMIT
.9989998E-01
.9900001E-01
.0000000E+00
.0000000E+01
.0100000E+01
.0000000E+01
.0000000E+00
.0000000E+00
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TERMINATION CRITERION MET. KUHN-TUCKER CONDITIONS SATISFIED TO
WITHIN 1.00000E-04 AT CURRENT POINT

FINAL RESULTS

GRG2GRG2GRG2GRG2GRG2GRG2GRG2GRG2GRG2GRG2GRG2GRG2GRG2GRG2G
RG2GRG2GRG2GRG2

SECTION 1 -- FUNCTIONS

K DISTANCE
INITIAL FINAL FROM LAGRANGE
NO. NAME VALUE VALUE STATUS  NEAREST  MULTIPIER
BOUND

8.63388E+01-4.07445E-06 EQUALITY-4.074E-06 5.60690E+00
.. T.32949E+01 4.15189E-06 EQUALITY-4.152E-06 -4.19892E+00
. —1.26888E-03 3.08429E-10 EQUALITY-3.084E-10 4.39056E-02
8.03891E-09-8.32922E-06 EQUALITY-8.329E-06 -8.89042E-01
.47112E+01-6.35002E-05 EQUALITY-6.350E-05 1.01982E-03
1.12449E+02-3.12085E~-05 EQUALITY-3.121E-05 -3.21191E-01
. 1.00000E+02-1.38272E+00 FREE 1.383E+00:U

.. —8.00000E+Q0-7.37646E+00 FREE 7.376E+00:U

. —1.81980E+02-1.82144E+02 FREE 1.821E+02:U
.30175E+01 1.07887E+01 O0BJ

© O ~NOUdWN -
|
n

[
[=]
N

SECTION 2 -- VARIABLES

1 9.90000E-01 9.99800E-01 NONBASIC UPPERBND-5.68055E+01
2 5.00000E-01 5.00000E-01 NONBASIC LOWERBND 4.77956E+00
3 5.47112E-01 4.61721E-01 BASIC 4.617E-01:L
4 4.34036E+00 3.61514E+00 BASIC 3.615E+00:L
5 6.26980E-02 1.17063E-01 BASIC 1.117E+00:L
6 1.16704E-01 9.42359E-03 BASIC 9.414E-03:L
7 4.30339E-02 7.06780E-04 BASIC 7.068E-04:L
8 6.26980E-02 1.15680E-01 BASIC 1.157E-01:L

RUN STATISTICS

GRG2GRG2GRG2GRG2GRG2GRG2GRG2GRG2GRG2GRG2GRG2GRG2GRG2GRG2G
RG2GRG2GRG2GRG2

NUMBER OF ONE DIMENSIONAL SEARCHES = 4086

NEWTON CALLS = 1266 NEWTON ITERATIONS = 1279 AVERAGE = .10E+01
FUNCTION CALLS = 2543 GRADIENT CALLS = 406

ACTUAL FUNCTION CALLS (INC,FOR GRADIENT) = 5791

NUMBER OF TIMES BASIC VARIABLE VIOLATED A BOUND = 4

NUMBER OF TIMES NEWTON FAILED TO CONVERGE = 657

TIMES STEPSIZE CUT BACK DUE TO NEWTON FAILURE = 608
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3.3 Extremum Behavior and Sufficient Condi-
tion for Stability

For elucidating the stability of particle-fluid two-phase flow and under-
standing its general characteristics, extensive calculation was carried out
to identify the extrema of different parameters, revealing the following
two important aspects.

3.3.1 Extremum Behavior

Both analytical and numerical solutions show that extremum for Ng
correspond to extremum for €. That is, if € is taken to be the objective
function in optimization, the same results would be reached as with Ny,
or vice versa. Therefore, in the PFC regime for which both Ny =min
and £ =min, maximal pressure gradient is expected from the relation
AP = (1 —€)pp - g, and for the contrary case of the FD regime, for
which £ =max, minimal pressure gradient. Figure 3-1a, calculated from
Model LG (Yan et al., 1993), shows the dependence of Ny and € on
flow structure and their relationships, indicating that Ny is maximized
when a uniform single-phase structure at points B and B’, character-
ized by ¢ = g, = €f = Emax = 0.975, prevails in the system, but is
minimized in the case of a two-phase structure at points A and A4’, for
which € = (¢c)min = €mf = 0.5 and &f = (6f)max — 1.0, leading to
minimal average voidage £nin, as shown in Figure 3-1b.

More extensive calculations, summarized in Figure 3-2 (Yan et al., 1993;
Li et al., 1993), show similar extremum characteristics of the dependent
parameters, and energy consumptions, N and W, for any specified op-
erating conditions, Uy and G,. This figure indicates that for a stable
system all the parameters tend toward either minimum or maximum,
depending on whether the prevailing regime is PFC or FD, except for
W, = %—-G g and Nt = ’—'P——U g9 Which depend solely on operating
conditions. These extrema can be used for substituting Ny as the objec-
tive function in solving Model LG, as was verified by calculation (Yan,
1993). As soon as one parameter is changed, corresponding changes take
place with all other parameters to reach a new extremal state. This ex-
plains why the two-phase structure can be preserved though intensive
turbulent fluctuations exist in the system.
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Figure 3-2 also shows certain necessary relationships between these ex-
tremal variables. Take the PFC regime for example: since N1 =constant
as long as Uy is specified, Nyt =min, which naturally corresponds to
N4 =max according to the first of the simple relations in Section 2.2:

Nt = Ng+ Ng
= Ny + Ny + Ny

It has been shown (Yan, 1993) that when Ng; =min, Ny =min, which,
according to the second of the above relations, leads to Ny + Ny =max.

Similar relationships hold with respect to W, from which the correspon-
dence of the extrema of €, U; and AP can also be deduced.

We see, in particular, that Ny and Ny tend toward opposite extrema in

"both regimes. Thus, by resolving a heterogeneous system into the ST
and ED subsystems, the non-extremal and flow-structure-independent
total energy Nt is partitioned into two extremal and flow-structure-
dependent components Ny and Ny, thus separating the analyzable en-
ergy component Ny from Ny which is difficult to formulate, and making
the overall heterogeneous system analyzable. It should be realized that
resolution of the total energy consumption Nt into the two extremal
components N and (Ng + N;) is also feasible.

It is evident that particle-fluid two-phase flow is characterized by nonequi-
librium features due to the existing dissipative processes in the system.
However, the difference between the nonequilibrium behaviors for the
FD and the PFC regimes has not been noted previously, which is essen-
tial in analyzing the stability and flow structure of the system.

In fact, Nq + N; is the total dissipated energy corresponding to the en-
tropy production rate defined by Nicolis and Prigogine (1977). There-
fore, from Figure 3-2, we know that the entropy production rate in
the FD regime tends toward a minimum, while the PFC regime stabi-
lizes at maximum dissipative energy (N4 + N, = max) corresponding
to maximum entropy production rate, characterized by nonlinearity and
nonequilibrium with an ordered two-phase dissipative structure relating
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to self-organization of particles.

Therefore, we know that the theorem of minimum entropy production
in thermodynamics (Prigogine, 1967; Li, 1984) might be applied to the
FD regime of particle-fluid two-phase flow, as used by Gidaspow (1978)
and Zhou (1985), but not to the PFC regime. The PD/PFC and the
PFC/FD transitions are related to the bifurcation phenomenon in ther-
modynamics, and need to be explored further.

It seems that particle-fluid two-phase flow is dominated by its extremum
behavior leading to the ordered structure, which is however disturbed
by the inherent turbulence of the lowing fiuid and the generated turbu-
lence in particle-fluid interaction inducing the disordered change in flow
structure. Therefore, future research should be focused not only on the
ordered aspect but also on the disordered aspect of the system and their
coupling.

3.3.2 Saufficient Conditions for Stability

Inasmuch as the PFC regime and the FD regime need to satisfy Ny =min
and N,; =max respectively, Model LG alone is still not sufficient for
identifying whether the PFC regime or the FD regime would prevail in
a system at any specified Uz and G,. An additional condition is needed
for identifying the stable regime. At the end of Section 2.5, this sufficient
condition was defined as the equality of W, calculated from both these
regimes, as can be elucidated further by referring to Figure 3-2. Figure
3-2 shows that in the PFC regime Ny is minimized with a corresponding
Wt minimized only conditionally (constrained by . = £,¢), compared
to Wy =min unconditionally in the FD regime, which corresponds, how-
ever, to Ny =max.

Figure 3-3 shows the changes of W, calculated with respect to Ng =min
for the PFC regime and to Ny =max for the FD regime, respectively.
The two curves cross each other at point B

(WSt)(N“)mjn = (WSt ) (Nst)max ‘5c=€mf
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which defines the critical condition for breaking up the two-phase struc-
ture of dense fluidization into a uniform structure of dilute transport (Li
et al., 1992). Combined with this condition, Model LG can be solved
for providing a comprehensive understanding of local fluid dynamics of
particle-fluid two-phase flow.

In the early stage of solving the EMMS model, the dilute transport
regime was assumed to be uniform and the transition from the PFC
regime to the FD regime was roughly determined by the jump of (Ngt)min

PFC FD

il 0 Defines Turbulent / Fast T
o= efines t / Fast Transition
. 3000+ oU,

2000 | W ) ppc= (Wni(\ﬂn)y'

/
o/
/

0 1.0 2.0 30 20
Gas Velocity U, (m/s) Une

L

J

\-. \(Wé)n/' (th,,)_,m‘., "

— Fast Fluidization

Wau=G.* g(oy=p)/ 0,
(Idealized Case)

Wa =Nu(l=e)p, [1/(m’ +s)]

OOSOONASININININY

Figure 3-3 Definition of Saturation Carrying Capacity
and Transition from PFC to FD Regime
(system FCC/air) -

from a low value for the heterogeneous structure to a high value for the
uniform structure. The location of this jump on the gas velocity axis de-
pends, to a great extent, on the convergence of computation which was
often imprecise, thus leaving a range of uncertainty, as shown in Figure
3-4. Such a deficiency is now made up by considering the sufficient con-
ditions for stability (Li et al., 1992), that is, defining the intersection
point B in Figure 3-3.
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In fact, the PFC/FD transition is also charactetized by undifferential
points for (Wst)min|ec=cmp (}wp‘:)nﬁnisc=emf

Figure 3-5.

Therefore, the sufficient conditions for the PFC and the FD regimes can

epy

be summarized, according to Figure 3-3, as follows

Regime

Sufficient condition for stability

PFC

FD

Figure 3-6 provides a summary of the extrema of the different energy
terms—W,, Ny and Wy /epr—in both the PFC and FD regimes and

Ng =min; (Wst)(N-:)min < (WSt)(N‘t)mu|‘°=‘mf

N, =max; (Wst)(N-t)min > (WSt)(N")“'“I“‘:‘“‘f

for the transition from the PFC to the FD regime.

{Nymin 1/ (kg * s)}

Figure 3-4 Uncertain Range of Convergence of (Nyt)min
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Figure 3-5
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3.4 Local Fluid Dynamics—Phases

3.4.1 Fluid Dynamic States

With increasing fluid velocity, as shown in Figure 1-3, a particle-fluid
system starts with the particle-dominated fixed bed terminating at Uy,
spans the particle-fluid-compromising regimes of particulate, bubbling,
turbulent and fast fluidization, and finally becomes fluid-dominated at
the so-called choking velocity U,s with the onset of dilute transport.
In actual reality, transport is yet possessed with vestigial heterogeneity
which disappears however at U,,; while lapsing into idealized transport.
Below Uyt and beyond Uyy;, the particle-fluid two-phase flow is homo-
geneous, and therefore the traditional theories apply. In the range from
Ums to Uuni, Model LG has two solutions corresponding to (Ngt) =min
and (Ng) =max, of which only one, depending on conditions, is stable.

Model EG was solved by using the GRG-2 algorithm to illustrate the
essential features of the local fluid dynamics of a typical particle-fluid
system consisting of FCC particles (d, = 54 pm, pp, = 929.5 kg/m?)
fluidized with air, in particular, the transition from the PFC to the FD
regime. All computation results satisfy the Kuhn-Tucker condition.

Figure 3-7 shows the relationship between the saturation carrying ca-
pacity K* and fluid velocity Ug, which defines the transition from the
PFC regime to the FD regime, that is, from dense fluidization to dilute
transport, as corroborated by the experimental points (the data at high
velocities was transposed from Figure 4-31).

For instance, if the solids flow rate is specified at G, = 50 kg/(m? - 5),
choking will takes place at Uy = 3.21 m/s for system FCC/air as indi-
cated in the figure. Throughout the entire regime spectrum, only at this
unique point (Upt, K*) both dense-phase fluidization and dilute-phase
transport can coexist. At velocities higher than Upt, only dilute trans-
port can exist, shown as Mode FD in Figure 3-3; and at velocities lower
than Uy, only dense-phase fluidization can take place, shown as Mode
PFC in Figure 3-3. The transition point at Up: identifies the unique
Mode PFC/FD on the curve of Figure 3-7 for the coexistence of both
modes, the relative proportion of which depends on other external con-
ditions such as the imposed pressure AP, as will be shown later.
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Figure 3-7 Definition of Saturation Carrying Capacity K* and
Its Change with Gas Velocity (FCC/air)

Figure 3-8 shows the flow structures of the circulating fluidized bed
(CFB) for all the above three operating modes. The curves in the lower
diagram give computation results of ef,ec and &, while the operating
conditions and flow structures are summarized at the top.

At gas velocities below Upt, the system is stabilized at Ny =min, since
(Wst)(N-:)m.. < (Wst)(1\/',,),,,,‘,4%__emf Therefore, Mode PFC prevails, show-
ing a dense region only with an average voidage of €,, operating in the
PFC regime at G; > K* with a two-phase structure—a dense phase
with voidage £., which is close to em¢, and a dilute phase with voidage
&g, which approaches unity. These characteristic voidages are shown as
optical voidage measurements at the top of the figure. For Mode PFC,
the external condition APmp > (1 — €a)ppgH must be satisfied.

With increasing gas velocity, (Wst) (M) mia approa.ches (Wet) (v, n)m_xl‘c_sz
gradually, and reaches it finally at Upt, corresponding to G,

that is, (Wat)( Netmin = (Wst)(N.t)m“lec——smf, implying that both the PFC
regime and FD regime are stable, that is, Mode PFC/FD, characterized
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by the coexistence of these two regimes with a dense region at the bottom
having average voidage ¢, and a dilute region at the top having average
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voidage €* for the idealized case, or ¢} for real nonidealized cases with
some degree of particle aggregation. Mode PFC/FD shows an S-shaped
axial voidage profile with an inflection point Z;, which changes with
AP in the range from (1 —¢*)ppgH to (1 —¢,)ppgH, and is stabilized
at APmp = (1 — ") ppg(H ~ Z) + (1 — €a)ppgZ;. In real units, Mode
PFC/FD sometimes may not appear due to limited vessel height.

Beyond Uy, the FD regime replaces the PFC regime which becomes un-
stable at G; < K*, resulting in Mode FD, showing a dilute region only,
and characterized by Ng; =max and APppp < (1 —€*)ppgH. In this
mode, the dilute phase voidage ¢; deviates from values close to unity as
shown by calculated results and corroborated by optical measurements
shown at the top of the figure. For the idealized case, a single-phase uni-
form structure prevails with € = &¢; but for any real case, a certain extent
of particle aggregation exists, until, with increase in gas velocity it ap-
proaches the idealized homogeneous condition. Here, only two extreme
cases can be calculated and discussed due to lack of understanding of the
structure of clusters existing in any real nonidealized FD regime: one is
the idealized case with uniform structure as discussed above, for which
average voidage at the choking point jumps from e, to £*; the other is
the case with the assumption of nonideality, that is, clusters still exist
with voidage €. = ey¢ as in the PFC regime. For the latter, the average
voidage calculated from Model LG will change as shown by the dashed
line for ey, vt )maxlec e g and the voidage at the choking point would jump
from €, to €]. The structural difference of particle aggregates between
Mode PFC and Mode FD (much smaller for FD) warrants further study.

For Mode PFC and Mode FD, any change in AP,;m, certainly causes
variation of solid flow rate G, and hence, local voidage in the whole
unit, while in Mode PFC/FD it only affects the location of the inflec-
tion point Z;.

As soon as gas velocity reaches Uyyi, the corresponding bed voidage ¢
reaches €., at which the particle concentration is so low that clusters
can no longer exist, particles are dispersed discretely and the system
becomes really uniform. At this point, the two solutions characterized

by (Nst)max and (Ng)min approach each other, and idealized transport
prevails.

Figure 3-9 shows the computed results for the local fluid dynamic states
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of the system FCC/air to illustrate the change of the status parameters
with gas flow rate Uy for two solids rates G = 50 and 75 kg/(m? - s).

Figure 3-9a shows that the voidages for the dense cluster phase and the
surrounding dilute phase remain essentially constant at e — e = 0.5
and g; — 1.0, respeetively, indicating that stability calls for this hetero-
geneity of the coexistence of the two phases, which leads to bubbling at
low gas velocities and clustering at high gas velocities.

As gas velocity Uy increases, the average voidage ¢ in Figure 3-9a in-

creases while the cluster fraction f in Figure 3-9c decreases, until at

some gas velocity a sudden change takes place with f dropping to zero

for the idealized case, denoting the disappearance of the cluster phase.

At this point single-phase solids transport begins to take over the two-

phase structure which has hitherto existed, with a new voidage of ¢* as .
Figure 3-9a shows, from which the average voidage increases gradually

with further increase in gas velocity.

Figure 3-8 has already shown that only at this singular point of sudden
change two regions can coexist in a reactor, a dilute transport region
with voidage €* surmounting a dense region with voidage €,, such as
is the case for the S-shaped voidage distribution curve in fast fluidiza-
tion shown for Mode PFC/FD. The position of the point of inflection
in this S-shaped curve can vary and is determined. by the imposed pres-
sure AP,y across the fast fluidized bed, or the solids inventory of the
entire circulating fluid-bed system (Weinstein et al., 1983), as explained
in connection with Figure 3-8. At gas velocities less than that at this
singular point, only one heterogeneous region of a two-phase structure
can exist, and at gas velocities greater than that at this smgular point,
only a single-phase region for transport can exist.

Figure 3-9b shows that before this sudden change, in the PFC regime,
the slip velocity U between solid particles and the fluid is far greater
than the terminal velocity U; of the particles. After this sudden jump,
in the FD regime, however, Us drops to a much lower value close to U,
as one approaches the idealized case. However, for nonidealized cases,
Us in the FD regime is still somewhat higher than U; due to residual
particle aggregation, as will be shown experimentally in Figure 4-24.
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Figure 3-9d shows that the dimension of clusters [ is large at low gas
velocities (down to dense phase continuous for bubbling fluidization),
decreasing with gas velocity down to dy at the point of this sudden
change, at which clusters disappear as noted already.

Figure 3-9e shows that gas velocity in the dilute phase Us increases with
the entering gas velocity Uy until it drops at the point of sudden change
when clusters disappear, to a value identical to that of Ug. Figure 3-9f
shows that gas velocity in the dense cluster phase U, which is approxi-
mately an order of magnitude smaller than the dilute phase velocity Uy,
also increases with the entering gas velocity Ug until U; terminates with
the disappearance of clusters at the point of sudden change.

Figure 3-9g shows that solids velocity Uy in the dilute phase is small
when clusters exist, implying that major solids flow occurs through the
clusters, only to jump to a high value at the point of sudden change.
Figure 3-9h indicates that solids velocity Ugc in the dense cluster phase
increases steadily with the entering gas velocity Ug, and terminates at
the point when clusters stop to exist all of a sudden.

The dominant mechanism of particle aggregation is related to the sta-
bility of the system: in the PD regime, particles are held together by
gravity; in the PFC regime, the fluid and the particles compromise each
other to seek an energy-minimized state, resulting in the aggregation
of particles to form a two-phase structure; in the FD regime, the high
fluid velocity works against this tendency of particle aggregation, thus
disrupting the two-phase structure, with a dramatic drop in cluster di-
ameter [.

3.4.2 Meso-Heterogeneity

The two-phase structure in a particle-fluid system is a localized meso-
scale phenomenon of heterogeneity, and has been shown to result from
the tendency of the system to seek a minimal energy for suspending
and transporting the particles, Vg =min. Figure 3-10 shows that if
the particle-fluid system were uniform, Ny would be ,E%Ugg, which
is higher than the corresponding Ny for the heterogeneous structure
composed of the sum of (Ns;)gense for the dense phase, and (Nst)dijute +
(Nst)inter for the dilute and inter phases. The lower value of Ny for
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the heterogeneous structure is due to the low value of the (N )dense
component as shown in the lowest curve in Figure 3-10. Section 2.2
on energy analysis already indicated that changes in . and &¢ affect
(Nst)dense and (Vg )dilute, and hence Ny considerably. It was shown
that Nt increases with increase in €. and decrease in ;. Therefore, in
minimizing Ny, £, tends toward the minimal value of e,¢ and £; towards
the maximal value of unity, as shown in Figure 3-8 for the PFC regime.

100 — I [ [
N(uniform) = (Nyne = U,g(Pp‘Pf)/ Py L _—____’_—
’
/
~
s =
/
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/ . N,(heterogeneous)
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Energy Consumption N, [J/ (kg * s)}

Figure 3-10 Mechanism of Local Heterogeneity in Gas/Solid
Fluidization (FCC/air, Gs = 50 kg/(m? - s))

3.5 Effect of Operating Conditions—Regimes

Not only the phase structure for particle-fluid flow, but also the con-
figuration of phase combination depends on operating conditions. A
regime defines the range of operating conditions within which the prin-
cipal features of any particular configuration of phase combination are
preserved. Crossing this range, a different configuration appears and a
regime transition is said to have taken place. Regime-related charac-
teristics of particle-fluid systems are of fundamental importance to the
design, operation and optimization of industrial processes.
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3.5.1 Energy Transport

Regime transitions are related to energy transport in particle-fluid sys-
tems which is determined by operating conditions. Figure 3-11 shows
the disbursement of energy consumptions, calculated by using Model
LG of Section 2.5: N1 per unit mass of solids and W per unit volume
of the system, versus fluid velocity U, and solid flow rate G, indicating
that the contributions due to suspension, Ny or W;, and due to dissipa-
tion, N4 or Wy, are considerable except for dilute-phase transport and
near minimum fluidization, while that due to transport, Ny or W;, is
minimal. The N, ~ Ug diagram suggests that dense-phase pneumatic
transport at low gas velocities would be economic, indicating further
that the efficiency of pneumatic transport could be increased by sup-
pressing the heterogeneity in the system. In fact, the total dissipated
energy should be N; + Ng or W; + Wy, though N, (or W) is dissipated
differently from N4 (or Wy), that is, in retaining the potential energy of
the particles by keeping the system expanded. In dilute transport, how-
ever, N, is mainly attributable to N; and is very close to Nt, meaning
that Ny + N, is negligible due to the isolated movement of the discretely
dispersed particles, for which the slip velocity between the fluid and
particles is very low.

3.5.2 Regime Transition

Among the various components of energy consumption discussed above,
Ny characterizes the stability of a particle-fluid system and governs
the regime transitions PD/PFC and PFC/FD, which occur at undif-
ferentiable points of N, with respect to Ug, as shown in Figure 3-10.
The term W, can be used for distinguishing subregime transitions bub-
bling/turbulent and turbulent/fast, corresponding to extrema of W
with respect to G; as shown in Figure 3-12, and with respect to U as
shown in Figure 3-3.

Calculated curves shown in Figure 3-12 indicate that Wy, reaches a max-
imal value at (8W,;/8G;) = O corresponding to a common dense phase
fraction of f = 0.5, regardless of gas velocity and solid flow rate. At
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f = 0.5, it is obvious that the dense phase fraction is equal to the dilute
phase fraction, and it is hard to identify which phase is the continu-
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ous one. In other words, a phase inversion from dense-phase continuous
to dilute-phase continuous is taking place, and the system can be con-
sidered to have reached a state of maximum heterogeneity. This can be

construed to mark the transition from bubbling to turbulent fluidization
as suggested by Grace (1985).
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Figure 3-12 Bubbling/Turbulent Transition: Corres-
pondence between f = 0.5 and %%";ﬁ

As discussed in Section 3.3, local or meso-heterogeneity is attributed
to any difference in value between (Ngt)dense and (Nt )dilute + (Vst )inter-
Their equality, as shown by their intersection at Uy, in Figure 3-10, can
therefore be considered to imply a transition from a uniform structure to

a heterogeneous structure, that is, a regime transition from particulate
to bubbling fluidization.
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Particle-Dominated PD-Regime—Fixed bed

The particle-dominating PD-regime, that is the fixed bed, which is gen-
erally operated at fluid velocities ranging from zero to Ups (unless the
particles are externally constrained), is characterized by the dominance
of particles over the movement of fluid, in which both the pressure drop
generated by the flowing fluid AP and the energy consumption Wy,
tend toward minima as the fluid passes upward through the immobile
particles in the most preferred way. With increasing fluid velocity, AP
gradually approaches the weight of the particles, and finally at Upys the
particles are forced to start moving, thereby losing their dominance over
the system by rearranging themselves to satisfy the requirement of the
flowing fluid, that is, to reduce the resistance to fluid flow, thus resulting
in the beginning of the PFC-regime.

A generally accepted criterion for this transition is

AP = (1 —eme)(pp — pr)g

or

GsEme

Uso=Upg + ——m——
& mf (1 - Emf)Pp

The fluid dynamics of this regime is relatively simple.

Fluid-Particle-Compromising PFC-Regime—Fluidization

As soon as the particles start to surrender their immobile existence to
the flowing fluid at Uy, the stability of the system begins to be deter-
mined jointly by both the particles and the fluid. The particles and the
fluid coordinate with each other in this new particle-fluid-compromising
or PFC regime, as the latter continues to seek a path of least resistance
and the former to aggregate as much as possible, to reach a state of min-
imal energy consumption for suspending and transporting the particles
Ng,. With increasing fluid velocity, the particle-fluid system continues
to expand as it traverses the following series of subregimes.
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PFC-Subregime 1: Uniform or Particulate This first subregime
spans the fluid velocity range between the minimum fluidization velocity
Ut and the minimum bubbling velocity Upy. Figure 3-10 shows that
at Umb, (Nst)dense = (Nst)dilute + (Vst )inter- At fluid velocities exceeding
Umbv (Nst)dense < (Nst)dilute + (Nst)interv lmplylng that Segregation of
some particles to form a dense phase would promote a reduction of Ny,
thus resulting in a heterogeneous two-phase structure. As more parti-
cles aggregate, bubbles form to accommodate increased fluid low. And
therefore, formation of the two-phase structure at Uy, is characterized
by the appearance of bubbles. Below Upp, however, Figure 3-10a shows
that (Ngt)dense > (Nst)dilute + (Nst )inter, indicating that particles segrega-
tion into a separate dense phase would not lead to a decrease in Ny, and
therefore the uniform one-phase structure would be stable. Thus, uni-
form expansion is possible even in the PFC regime so long as Upp > Uy

PFC-Subregime 2: Bubbling The low-expansion PFC-regime at
fluid velocities beyond Uy, is characterized by low-frequency bubbling
(or slugging when the dimension of the retaining vessel is small) of the
particle-fluid system with the coexistence of individual air-rich bubbles
and a continuous particle-rich emulsion phase.

PFC-Subregime 3: Turbulent With increasing fluid velocity, bub-
bles grow larger with a corresponding decrease in the volume fraction
of the emulsion phase f, until f goes down to %, at which, what may
be called a phase inversion takes place as the continuous dense phase
emulsion begins to break up into discrete particle clusters, which are
now immersed in a newly formed continuous broth of dilute suspension
of essentially discrete particles, to form a new subregime 3, called tur-
bulent fluidization. Computation shown in Figure 3-12 indicates that
this point of f = % corresponds to a maximal value of Wy, with respect
to Gs, regardless of fluid velocity and solids flow rate. Therefore, the
transition between PFC subregions 2 and 3, or between bubbling and

turbulent fluidization can be identified quantitatively as

aWst

el =0 or f=0.5
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PFC-Subregime 4: Fast With increasing fluid velocity, especially
with the simultaneous withdrawal of solids at the top and their recir-
culation to the bottom of the particle-fluid system, W, continues to
increase until at higher solids dilution, it decreases, thus displaying a
maximum as shown in Figure 3-3. This maximum of W, with respect
to fluid velocity marks the transition of the turbulent subregime into
fast fluidization, and is defined by

aI/Vst

U, 0.

The high frequency of cluster formation and dissolution in fast fluidiza-
tion is reflected in high-frequency random voidage filuctuations as shown
in the middle inset at the top of Figure 3-13. Such a change in two-phase
behavior promotes efficient gas/solids contacting.

While the transition from turbulent to fast fluidization is mathemati-
cally definable as %V[LJ’:,, = 0, in practice the differentiation between the
two subregimes is actually hard to perceive, and, though controversial,
turbulent and fast fluidization are often grouped together under the over-
all designation of “high-velocity fluidization” or “circulating fluid bed”
(Reh, 1971).

When the upflowing fluid acquires enough momentum at Up, to entrain
all the particles at the saturation carrying solids flow rate of K™, the
heterogeneous two-phase structure breaks down altogether, and all of a
sudden, fast fluidization is taken over by dilute-phase transport, essen-
tially single-phase, with vestigial particles aggregation, however, for any
real system. This marks the final transition of the PFC-regime into the
FD-regime, as already discussed in Section 3.3.1, under the criterion

(WSt)(N“)min = (WSt)(Nsc,)mulec:Emf



Jinghai LI and Mooson KWAUK

Volume Fraction of Dense Phase f

€ —f E
Ef_‘w

[Low Expansion i

-1.0
wo
&
%
0.5 f.g
>
8
2
o
-0 J;/\MJL___A_
FPC regime ] FD regime
- |
(two-phase) nonideal (transport) | idealized —
10 - ©max

w N
g |y
Z H 5
2 i f ==== (Nymax b
g U
£ & _—— (N ,()min
z |
os - emf s Stable States
UD‘ Ui
L " — L v .
0 20 40 6.0

Gas Velocity U, (m/s)

Figure 3-13 Flow Structures and State Characteristics of
Gas/Solid Fluidization in Different Regimes
(FCC/air, G = 50kg/(m? -s))



Particle-Fluid Two-Phase Flow 75

Fluid-Dominated FD-Regime—Transport

The FD-regime is characterized by the dominance of the fluid over the
movement of particles, as already shown in Figure 3-8. When the fluid-
dominated FD-regime is first formed, the clusters of fast fluidization are
disintegrated to form an essentially one-phase structure in which the
particles are however not completely discretely suspended, that is, at a
much higher concentration as compared to the 5 computed for the broth
before Up;. This is shown by the fluctuating voidage considerably above
zero, as can be seen in the upper right hand side of Figure 3-13. This
essential change in &r is related to the dramatic change of flow structure
at the choking point.

According to the degree of uniformity of the system, the fluid-dominated
FD-regime can be divided into two subregimes: dilute transport for real
systems and idealized dilute transport. the transition between the two
subregimes occurring at the value of e as defined in Section 2.3.

FD-Subregime 1: Actual Transport This subregime comprises the
case for most actual systems right after the fluid velocity exceeds Up,,
in which vestigial particles aggregation is yet present, though the size
of clusters is orders of magnitude smaller than those observable in fast
fluidization. Therefore, meso-heterogeneity due to interparticle forces
still persists until the voidage of the particle-fluid system reaches the
value of £max at an even higher fluid velocity when all particles are
dispersed to reach the idealized state of complete uniformity. Therefore,
the termination of this subregimes can be identified by calculating €max,
which will discussed in the next section.

FD-Subregime 2: Idealized Transport This regime is character-
ized by the complete dominance of the fluid over the particles with the
total suppression of the effect of interparticle forces, thus realizing com-
plete dispersal of solids and complete uniformity in the particle-fluid
system.

The spectrum of regimes and subregimes for particle-fluid systems and
their transitions as well as their principal characteristics are summarized
in Figure 3-14.
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Figure 3-15 shows still another version of calculated regime diagrams.
Figure 3-15a is a two-dimensional € ~ Ug ~ G regime diagram. The
partly cross-hatched, wedge-shaped region toward the top is the region
for Mode PFC/FD, in which axial voidage profiles are S-shaped. The
influence of imposed pressure drop APy, on the inflection point Z;
of an axial voidage profile is shown in this mode as a family of hor-
izontal lines. This figure also shows relationships between other flow
regimes. Figure 3-15b shows a two-dimensional Wy ~ Uy ~ G5 regime
diagram, indicating the boundary between the turbulent regime and the
fast regime defined by %vg;& = 0, and the boundary between the bub-

bling regime and the turbulent regime defined by %V-gf- = 0, as well as
the jump of Wy from (Wg )prc to Gsg at choking points. Figure 3-15¢
shows a two-dimensional G ~ Uy regime diagram which represents the
relations between G and Ug when regime transitions occur. If Uy < Uy,
the system cannot operate in the F'D regime, meaning that only one
state can exist with a two-phase structure. Comparison between Figure
3-15a, Figure 3-15b and Figure 3-15¢, shows that there is a triple point
TFP below which turbulent fluidization transits directly to dilute-phase
transport without passing through the fast regime.

3.6 Effect of Material Properties—Patterns

Dependence of local fluid dynamics of particle-fluid two-phase flow on
material properties, e.g., density and viscosity of the fluid and density
and size of the particles, results in different patterns of regime spectra,
which are important to the design, development and operation of pro-
cesses. The complete regime spectrum—particulate-bubbling-turbulent-
fast-transport—is illustrated by the fluidization by gas of smooth, fine
and well graded powders belonging to Geldart’s Class A. The extreme
aggregative degenerate of the regime spectrum is bubbling-transport for
Geldart’s D particles, and the extreme particulate degenerate is for rel-
atively fine and uniform particles fluidized by a liquid—particulate flu-
idization only.
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3.6.1 Particle Aggregation

The direct effect of the properties of the fluid and the particles on
particle-fluid two-phase flow is the degree of particle aggregation which
is reflected in the cluster diameter I. In Section 2.3, the cluster diameter
| was considered to diminish to d, when the voidage has increased to
E€max = 0.9997. This value was recommended by Matsen (1982) for the
fluidization of fine particles by a gas, and can therefore be used for the
FCC/air system.

In fact, €max depends not only on the properties of materials but also
on operating conditions as well (Wu et al, 1991; Chen et al., 1994).
For evaluating the variation of £,,,x With material properties, a correla-
tion has been developed on the basis of the following considerations: If
the ratio of the frequency of particle-fluid interaction to the frequency of
particle-particle interaction, f¢/ fp, is much high than unity, the particle-
fluid system can be considered dilute, and the effect of particle-particle
interactions can be neglected (Soo, 1984).

Whu et al. (1991) calculated f, and f; by using the following correlations
developed from Soo’s expressions of f, and f; (1984):

_ 62 <ug>% (1—-¢)

(3.1)
P 4

ps , 18u¢ 2'7,40.313“50.887

fe= ;;( d2 + d1313 ) (3.2)
Therefore,
1 45,/0-313,,0.687

s ! (%Vi’“o ) (33)

fo Pp ﬁ(up)z (1—¢) 9p 0.

2
P

Lee (1989) with the assumption of low particle concentration:

3 3 T 1
(2 = (ut)?

L
. where the particle velocity fluctuation <u >2 is calculated according to
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1
2

where (u2)? is the velocity fluctuation of the fluid, and

1
__ 3Cp,ps 23 2\2
B = Tabe (<uf>2 N <u¥’> )

— 24 3.6
‘ Cp, = Rep + Re33T3

W2V 3 2\
Rep = ((2) (4) )

f

TLf‘ _ 0.037u*dg

- (ud)

According to Hinze (1975),

*

d
Y _ 9 44in (”2 B) +2.0

u* vf

1
Thus, <ug>2 can be evaluated. Equation 3.3 defines the relationship

between € and fi/f,. Then, Wu took us ~ u¢, and defined e(f;/fp, =
1.0) = emax- Chen et al. (1993) modified Wu’s definition by analyzing
the dependence of f;/f, on € and deriving the expression of real slip
velocity us. Assuming that the dissipated energy can be neglected in a
dilute uniform suspension, we have

We = Gs - g =UgAP = (pp — pr)(1 —¢) - gUg

Since G5 = Uq - pp, we get

U. = Udpp
g =
(pp—pr)(1 =€)
Noting ug = Ug/e and up = Ug/(1 — €), we have

Us = Uuf — uUp = Ya Pr -1
) P (1~e) [(pp— pr)e

1
With the above ugs and <u§> ?, the curve in Figure 3-16 can be computed

from Equation 3.3, resulting in the asymptotic value of £, = 0.9987
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as f¢/fp tends to infinity.

Figure 3-16 for glass beads in CO; shows that at first f;/f;, changes
little with increasing voidage € until € reaches 0.9987 after which fz/f,
increases dramatically with increasing &, implying that particle/particle
interaction is rapidly suppressed. This critical voidage €max, signifies the
disappearance of particle/particle interaction, that is, particle aggrega-
tion can no longer exist.

l.m T T T

098 0 0.5 1.0 1.5 20

R’/ S

Figure 3-16 Change of f;/f, with Voidage and
Definition of £, (system glass/CO,:
Po/pt = 127.5, vp = 107€ m?/s)

From the above analysis, it is evident that .« is dependent not only on
density ratio as shown in Figure 3-17, but also on particle diameter as
shown in Figure 3-18a, as well as on operating conditions (Gs) as shown
in Figure 3-18b. Figure 3-17 shows the relationships between voidage
€ and fi/f, for different p,/ps, indicating that £may, defined such as in
the Figure 3-16, decreases with decreasing pp/ps.
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Figure 3-17 Dependence of f;/f, on Voidage ¢ and Density ratio pp/ps

curve pp/pt ve system

1 2162 1.6 x 107° m?/s Glass/air

2 127.5 107® m?/s Glass/CO

3 12.75 9.5x 1078 m?/s Glass/CO,

4 6.38 7.5x 1078 m?/s Glass/CO,

5 3.64 8x1078m?/s Glass/CO:

6 3.19 10 m?/s Glass/Ethylether
7 2.55 1079 m?/s Glass/H;0

With the value of £yax, cluster diameter can be calculated from Fg(X)
in Chapter 3. Figure 3-19 shows the variation of calculated cluster di-
ameters for the FCC/air system with gas velocity, indicating different
mechanisms of particle aggregation in different regimes: packed in the
PD regime due to the gravity, formation of emulsion and clusters in
the PFC regime, and of particle aggregates due to vestigial interparticle
forces in the FD regime. With the onset of dilute transport , the size of
clusters is dramatically reduced because of the dwindling dominance of

(Nst)min-
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Figure 3-18 Dependence of €ymay on Particle Diameter and Solids Flow Rate
a — particle diameter (p,/ps = 2162);
b — solids flow rate (Uz = 6 m/s)
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Figure 3-19  Cluster Diameter in Different Fluidization Regimes
(system FCC/air: p,/ps = 788,v; = 1.6 x 1075 m?/s)
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3.6.2 Density Ratio

Figure 3-20 compares the computed results for the FCC/air system
against those for the glass/water system, to illustrate the disparate be-
haviors of G/S and L/S fluidization.

The first three insets on the lefthand side show the change of voidages,
es,€c and €, cluster phase fraction f and slip velocity Us. The discon-
tinuity at Ug = 3.21m/s should be noted for the sudden change corre-
sponding to the condition of “choking,” commonly recognized for G/S
fluidization. In the corresponding insets for the L/S system, however,
the three voidages e¢, ec and ¢ are identical, and the cluster phase frac-
tion f is zero, indicating the absence of clusters throughout the velocity
range of Uy, that is, fluidization is homogeneous. Also, the slip velocity
U, between solid particles and the surrounding liquid is always less than
the terminal velocity U; of the particles, which remains the asymptotic
value for the increasing slip velocity Us as the liquid velocity Uy increases.

The lowest two insets of Figure 3-20 compares the power for suspending
and transporting the solid particles Ng for the G/S and L/S systems.
For the FCC/air system, N is always less than the total energy Nt =
B%L Ugg, until it jumps to the latter value at the point of sudden change
of choking, while for glass/water, Ny is always the same as Nt in view
of its homogeneous nature:

1. no jump of paramelers;
2. no two-phase structure, that is f = 0;

3. U, is always lower than U, and close to Uy with increasing expan-
ston of system;

4. Ny is negligible, implying that energy is mainly consumed for sus-
pending and transporting particles;

5. the transition from the PFC to the FD regime takes place smoothly
without choking
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Figure 3-20 Differences between G/S and L/S Systems

Figure 3-21 shows the gradual transition of the homogeneous glass /water
fluidization to the highly heterogeneous or aggregative glass/air flu-
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idization, as the particle/fluid density ratio p,/ps increases from water
through ethyl ether, and carbon dioxide under different stages of de-
creasing pressure from its critical condition, to atmospheric air. The
appearance and gradual growth of the two-phase structure is evident in
the order of the fluids listed. For instance, the curves in the top left
inset show that at pp/p;f = 2.55 for glass/water, f = 0 throughout the
range of fluid velocity Uy, indicating a homogeneous particle-fluid sys-
tem. When the ratio pp/ps has increased to 3.19 for glass/ethyl ether,
however, the two-phase structure appears for fluid velocities Ug up to
0.25 m/s. This velocity range broadens through carbon dioxide under
decreasing pressures near its critical point, until at p,/pf = 2,162 for
glass/air, this two-phase structure has extended beyond Uy = 2.8 m/s.

With decreasing pp/ps from G/S system to L/S system, the voidage
curve characterized by a sudden change at the choking point degener-
ates into a smooth curve, showing the gradual shift of the choking point
from high velocity to low velocity. Finally, the choking point disappears,
and the two states become identical in L/S system.

While Figure 3-20 demonstrates from modeling the disparate nature be-
tween G/S and L/S fluidization, Figure 3-21 shows continuity in particle-
fluid behavior through properly selected intermediate fluids, thus recon-
ciling in theory the phenomenological discrimination between aggrega-
tive and particulate fluidization.

Figure 3-22 shows Ny ~ Ug plots corresponding to the e ~ Uy plots in
Figure 3-21. Heterogeneity in particle-fluid two-phase flow is attributed,
as was noted in Figure 3-10, to the difference between (Ngt)dense for
the dense phase and (Ng)dilute + (Nst)inter for the dilute phase. As
soon as (Ngt)dense 15 lower than (NVgt)ditute + (/Vst)inter tWo-phase struc-
ture prevails, as shown in Figure 3-22 in relation to Figure 3-21. How-
ever, the choking point shrinks gradually to the bubbling point defined
by the equality of (Ngt)dilute + (Nst)inter and (Nst)dense With decreasing
pp/ ps, and finally merges into the particulate regime, indicating that the
PFC/FD transition can occurs without choking. This type of PFC/FD
transition happens in most L/S systems. With increasing liquid veloc-
ity, the systems expand uniformly without entrainment of solids, until
at some liquid velocity, the expanded solids begin to spill out of systems.
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At higher p,/pr ratios, however, heterogeneity can appear even for L/S
systems, as shown in the Ng ~ U plot for glass beads/ethyl ether in
Figure 3-22 (corresponding to € ~ Uy in Figure 3-21), or in the ¢ — Uy
plot for copper-shot/water system (Yu, 1986) in Figure 3-23, for which
pp/ps =T738.

0 | I
O Copper / Water (Yu, 1986)
—0.] —— === Idealized Fluidization — o
o°
0©°°
w —0.2
3

-03
-04 L .

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

Log U; (cm/'s)

Figure 3-23  Aggregative Behavior in Copper/ Water System

3.6.3 Particle Diameter

To understand the effect of particle diameter on local fluid dynamics
of particle-fluid systems, it is essential to analyze constraint F3(X) in
Model LG for comparing the structural difference between the dilute
and the dense phases.

Because the pressure drop generated by fluid flow in the dilute phase
is mainly due to interaction at the interface between clusters and their
surrounding broth, that is, APgjute << Finter/(1 — ), F3(X) can be
simplified to

APdense = inter/(l - f)
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that is

3 Coune T = S00, (0= 7 Lol
For systems with fine particles, Cp,_ related to d, and U is much higher
than Cp, related to [ and Uy, because of the strong dependence of drag
coefficient on particle diameter and fluid velocity in the Stoke’s range.
To maintain the equality APjepse = Finter/(1 — f) as required by fluid
dynamics, € 4'715:—‘1pr3¢ representing the flow structure in the dense

phase must be considerably smaller than (1 — f)~%7 (T—Lfﬁprgi repre-
senting the flow structure of the inter phase.

For large particle, Cp, is almost equal to Cp, due to the essential con-
stancy of the drag coefficient in the Newton’s range, therefore, reducing
the difference in flow structures of the two phases. It can therefore be
deduced that the structural difference between the dense phase and the
inter phase would become smaller and smaller with increasing parti-
cle diameter, eventually approaching the homogeneous structure. On
the other hand, large particles may result in the degeneration of the
regime spectrum, as has already been noted for Geldart’s Class B and
D particles which are impossible to fluidize in the uniform expansion
regime. Size distribution of particles, which affects so much the be-
bavior of particle-fluid two-phase flow, may well be a key to improved
fluidization quality (Kwauk and Li, 1989).

3.6.4 Fluid Kinematic Viscosity

The effect of fluid kinematic viscosity v; on phase structure has not been
extensively understood, and experimental results can hardly be found.
However, a preliminary prediction can be made on the basis of the prin-
ciple of the EMMS model,

In particle-fluid two-phase flow with low fluid kinematic viscosity, Cp, is
not very much different from Cp, because they both correspond to high
Reynolds numbers. Therefore, the phase structure in the dense phase is
close to that in the dilute phase. On the contrary, Reynolds number be-
comes lower with increasing fluid kinematic viscosity, thus increasing the
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difference between Cp, and Cp,, and hence, between the flow structures
of the two phases. It is expected that the decrease in fluid kinematic
viscosity would be beneficial to uniform flow structure.

3.7 Overall Fluid Dynamics—Regions

While local fluid dynamics of particle-fluid systems—phases, regimes
and patterns—is concerned with its intrinsic stability, of direct engi-
neering significance is its overall fluid dynamics which deals with its
space-dependent characteristics subject to the boundary conditions set
by the retaining vessel. For the axisymmetric equipment generally em-
ployed in engineering, overall fluid dynamics is resolved into the axial
and the radial directions: top and bottom regions for the former, and
core and wall regions for the latter. On this macro-scale, therefore, the
principle of energy minimization has to be applied on an extended scale,
in order to quantify the heterogeneous flow field.

3.7.1 Axial Fluid Dynamics
.Axial Heterogeneity

Axial heterogeneity is mainly related to the coexistence of two different
regions in terms of local fluid dynamics—a bottom dense region with
average voidage €, and a top dilute region with average voidage £*,
bridged together by a transition region, so as to form an S-shaped profile,
such as was first treated by Li and Kwauk (1980) for fast fluidized beds:

e(h) —€a

o —eh) ~ P [—(z = Z)/ Zo]

in which Z; is the location of the point of inflection in the profile, and
Z, is called the characteristic length, which governs how quickly the top
and bottom regions merge into each other and is related to operating
conditions and material properties (see Section 5.1.3 for its correlation).

According to the analysis of local fluid dynamics, the top dilute region
operates in the FD-regime, while the bottom dense region, in the PFC-
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regime. Therefore, whenever the S-shaped profile appears, the corre-
sponding solid flow rate is bound to be equal to the saturation carrying
capacity K*. Such axial macro-heterogeneity depends not only on the
local fluid dynamics given by Model LG, but also by the pressure drop
imposed across the unit AP,,p which affects the position of the inflec-
tion point Z;, and, as discussed in Section 3.3.1 and shown in Figure
3-8, can operate in three modes:

Local Conditions Overall Conditions Voidage Regions
Mode PFC Ug < UptyGs > K*  APmp > (1 —€a)ppgH  dense only

Mode PFC/FD Ug = U, G, = K* (1 ~¢€*)ppgH < APpp dilute/dense
< (1 -ea)ppgH

Mode FD Ug > Upt;Ge < K°  APimp < (1 —€")ppgH dilute only

Therefore, to realize any desired mode of operation, it is necessary to
control both the local and the overall conditions.

250

200

h (m)
&

1.00

0.50

Figure 3-24 Contribution of Particle Acceleration and Hold up
to Total Pressure Drop in the Acceleration Zone
(see Figure 4-24 for operating conditions)

1. APioc, . 2. AH\oldug
Ppg Ppg
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Moreover, at the very bottom of the fluidized bed, much energy is ex-
pended in accelerating the particles with a sharp increase in bed voidage,
which approaches with increasing bed height a steady state value, for
instance, €, for Mode PFC/FD. During acceleration, the pressure drop
AP, far exceeds that needed by the weight of the particles APyg1qup,
as was shown by Weinstein and Li (1989) in Figure 3-24. In the outlet
section, an increase in bed density may, too, occur, though mainly due
to backmixing of particles induced by exit configuration.

Mathematical Modeling

The three modes of operation shown in Figure 3-3 are identified as fol-
lows:

Mode PFC: 1-region (Wet) Wae)min < (Wat) (Nat)mmaelecme g
Mode PFC/FD: 2-region  (Wist) (N, )mia = (Wst)( Nyt)maxlecms e
Mode FD: 1-region (Wet (Nt )min > (Ws,.‘;)(1\;“)"”(‘%:5“1f

To calculate the two-regioned axial parameter profile in Mode PFC/FD,
€a and &* are determined as follows:.

For the one-dimensional profile now under consideration, the‘ﬂuid dy-
namics of the top dilute region can be described by

(Nst)* = max
Fi(X*)=0 (i=1,2,..,6)
U 20,U% >20,U5 20

Solution of this model gives X* and &*. Of course, it is only possible to
calculate the two extreme cases—the uniform case with Ng =max and
the completely nonidealized case with Ny = max|e =

And the fluid dynamics of the bottom dense region is governed by

(Nst)a = min
F(Xa)=0 (i=1,2,..,6)
Usc.. .>_ 01 Usf, 2 Os Usi, 2’. 1]
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which gives X, and ¢,.

From the values of €, and " thus calculated, and AP,yp computed from
solids inventory and the geometry of the equipment, Z; can be deduced
from pressure balance:

_ APy — (1~ ea)ppgH

Z;
(€a — 5*)ppg

And then, the entire axial voidage profile can be calculated from the
Li-Kwauk model mentioned earlier in the present section.

3.7.2 Radial Fluid Dynamics

Radial Heterogeneity

Radial heterogeneity, showing a dilute core region surrounded by a dense
annular region next to the wall, is attributed to the role of the wall in
promoting minimization of fluid-particle interaction by inducing a dense
region near the wall with low Ny, thus resulting in the radial distribu-
tions of all parameters. Such a heterogeneous flow structure affects the
performance of a chemical reactor critically, though in a positive way
sometimes, but likely in a negative way, because the formation of radial
distribution results in considerable decrease in fluid-particle contacting
and leads to backmixing of both fluid and particles.

Mathematical Modeling

Model LG applies just as well to radial heterogeneity, though in a some-
what different functional form, to describe the fluid dynamics at any
radial position r:

a) Ng(r) = extreme (min for G¢(r) > K*;
max for G4(r) < K*)

b) Fi(X(r))=0 (t=1,2,...,6)

C) Usc("‘) > 07 Usf(r) > 07 Usi(r) >0

Model LR
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This model, Model LR (Local-Radial), describes the dependence of X (r)
on gas velocity Ug(r) and particle velocity U4(r), which are however not
manipulatable operating parameters, but should be correlated with the
average superficial gas velocity U; and the average superficial particle
velocity Uy (= Gs/pp) as well as boundary conditions.

In order to calculate Ug(r) and Uy(r) from the specified operating pa-
rameters Ug and Gy, it is necessary to know the dominant factor defin-
ing radial heterogeneity. Extending the energy minimization method to
overall fluid dynamics, a stable radial profile calls for not only Model
LR for local fluid dynamics at every point, but also the minimization of
the cross-sectional average N for overall stability, which is defined by

Ng = Nt (r)[1 — e(r)]rdr (3.4)

R2(1 —) /

where the cross-sectional average bed voidage Z is defined as

z= -;—2 /0 ® e(ryrdr (3.5)

To fulfil both local and overall stability, all parameters would adjust
themselves radially in such a way that not only Ny (r) at any radial
position is minimized for the PFC regime, or maximized for the FD
regime, but also N for the whole cross-section is minimized, yielding
radial profiles as governed by the following Overall-Radial model

a) N = extreme (min for G > K*; max for Gs < K*) W
b) Model LR(’I‘)

) Ug=+4 fo Ug(r)rdr

d) Ui=Gs/pp= —zfo Ug(r)rdr

e) AP4(r) = constant

f) boundary conditions

L Model OR

7

The parameter vector X(r), describing this twofold optimization prob-
lem, depends on both local and overall fluid dynamics. For a system
without wall effects, Model OR simplifies to Model LG for local fluid
dynamics.
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Condition (a) in Model LR states that Ny may be minimal or maximal
depending on radial position r:

< 2

R,
M= s { [ (V) masa ~ e(r)yrar

R
+-/R1 (Nt (7)) min(1 — e(r))rdr]

where R; is the position at which regime transition from the FD regime
in the core to the PFC regime near the wall occurs, which should satisfy
the condition

(Nst(Rl))min(l — €(R1)min) = (Nst(R1))max(1 — E(Rl)mu)lec=emf

It is clear that in addition to the identification of operating modes, this
equation has also to be used for selecting maximum or minimum Ng in

Model LR.

If we consider the simple case in which both the core region and the
wall region operate in the same regime, i.e., both FD, or beth PFC,
then Model OR can be applied to the top dilute region assumed to be
all in Mode FD,

a)
b)
c)
d)
€)
)

New = griimgy Jo (Nt (7)) max (1 — £(r))rdr — max

\

Model LR(r)(with N (r) — max)
AP, (r) = constant

Ug = fg fOR Ug('r)rd;

Ug =Gs/pp = 7.?7 Jo Ua(r)rdr

Y Model OR-FD

Boundary conditions J

and to the bottom dense region assumed to be all in Mode PFC,

a)
b)
€)
d)
e)
f)

No = mog=gy Jo Nat(r))min(1 = e(r))rdr — min )
Model LR(r)(with Ng(r) — min)
AP, (r) = constant L
Ug = %foﬂ Ug(r)rdr
Ug = Gs/Pp = Ez’f foR Ug(r)rdr
Boundary conditions

Model OR~-PFC
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This simplification also applies to any one-region operation, either FD
or PFC.

Solution of Model OR

In theory, given the required boundary conditions, it is possible to cal-
culate the radial profiles of all parameters with Model OR from the
specified operating variables, Uy and G;. An approximate solution to
the simplest case of the PFC regime, for example, that is, Ng; = min, is
possible by simplifying Model OR with experimental results, for calcu-
lating Uq4(r) from Ug(r) and &(r).

Radial heterogeneity is assumed to be distributed in terms of a het-
erogeneity factor K(r), defined as the ratio of the equivalent cluster
diameter {(r) to the particle diameter d, that is, K(r) = I(r)/dp. When
the voidage profile e(r) is known, K(r) can also be expressed as K(e(r)).
At minimum fluidization, the cluster diameter is evidently equal to the
diameter of the unit, and at infinite bed expansion, € = 1.0 and [ = d,,
that is

K(ems) =dp/dp and K(e=1.0)=1.0

At any radial position r, U4(r) can be calculated from Ug(r) and &(r)
by using Model LR through a trial f(A,r) which may be approximated
by polynomials or other adequate functions with the parameter vector
A, to be optimized with respect to Ny =min. Now, the problem be-
comes how to find K(r), that is, how to determine A, in order to satisfy
energy minimization, force balance, continuity and the given boundary
conditions. Therefore, Model OR is simplified for PFC regime as the
K-Radial (KR) model:

To find K(r) = f(A,r) )
Satisfying a) Ng = min
b). Model LR(r) >  Model KR-PFC
¢) K(emt) =dB/d;
d) K(6=10)=1.0
e) Ug= %ff Ug(r)rdr |
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For calculating the radial profiles in the FD regime, for instance, in the

top dilute region, Ny should be maximized to form the counterpart
Model KR-FD.

Model KR (PFC or FD) can also be solved by using the GRG-2 algo-
rithm for both local and overall energy minimization. Since it is called
by the main program for both local and overall optimization loops, all
names of its subroutines should be changed for fitting the requirement
of FORTRAN 77, resulting in a new version called GRG-21. Therefore,
in solving Model KR, the local loop calls GRG-21, while the overall loop’
calls GRG-2. The scheme diagram for solving Model KR is shown in
Figure 3-25.

!

Input U,(r), &)
]

Input Initial Value of A

|
v, . ko |
|
B Local Minimization
Model LR calls GRG21

Ng(r)=min b Uglry), Ng(ry)

No

% T

Yes

Overall Minimization
Model KR calls GRG2

Output: Ufry), A
(k=1.2,...M)

Figure 3-25 Scheme Diagram of Solving Model KR
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Figure 3-26 shows the radial profiles of parameters involving the solid ve-
locity Uq4(r) calculated from Model KR-PFC (Li et al., 1991c) using the
data provided by Bader et al. (1988) on radial distribution of voidage
and gas throughput as shown in Figure 3-26f.
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Figure 3-26 Comparison of Calculation Results of Model KR-PFC with
Experimental Data of Bader et al. (1988)
(dp = 76 um, pp, = 1714 kg/m>,dg = 30.5 cm,
Ug = 3.7 m/s, G, = 98 kg/(m? -s))
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Figure 3-26a shows the calculated radial distribution of the heterogene-
ity factor K(r). In the dilute core region, the bed structure is shown to
be close to homogeneous with small particle clusters. Beyond » = 12 cm
near the wall, the heterogeneity factor increases dramatically, indicat-
ing a much more aggregated bed structure. Energy consumption Ng(r)
depends strongly on bed structure as Figure 3-26b shows—very high in
the dilute core region, but extremely low in the dense wall region. Such
a distribution of N (r) and particle population leads to minimization of

N4, and hence, to a stable radial profile.

The real solids velocity profile calculated from Model KR, and the real
gas velocity profile deduced from Figure 3-26f, are shown in Figure 3-26c
for comparison. Because of the near-homogeneous bed structure in the
dilute core region, solids velocity reaches high values approaching the
magnitude of the gas velocity. In the dense wall region, low and even
negative solids velocity exists, which causes local solids and gas back-
mixing. A comparison of the calculated and the measured (Bader, 1988)
solids velocity profiles, which are independent from each other because
the latter was not used for simulation, is shown in Figure 3-26d. A rea-
sonable agreement is achieved.

The calculated radial profile of slip velocity between gas and solids is
shown in Figure 3-26e. The lowest slip velocity occurs in the center
of the unit due to uniformity in this region, the highest not far from
the wall. It is worth to note that the local slip velocity shown in
this figure is lower than the cross-sectional average slip velocity Us, or
Ug/€—Gs/pp(1—7) = 3.5 m/s. This indicates that the high slip velocity
for the overall circulating fluidized bed reactor should be attributed not
only to overall heterogeneity—radial profile, as reported by Rhodes and
Geldart (1985), but also to local heterogeneity (aggregation of particles).
Therefore, the global average slip velocity is not adequate for correlating
particle/fluid contacting in the system, but local slip velocity, or even
more intrinsically, local fluid-particle interaction intensity, must be used
as indicated by Li et al. (1993).

Figure 3-27 shows the respective contributions of local heterogeneity
and overall heterogeneity to energy minimization, as calculated with
the same conditions as for Figure 3-26. In Figure 3-27a, Ny (r) was
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calculated from Model KR with regard to both local and overall hetero-
geneity, and N and Z are the cross-sectional averages of Ny (r) and e(r).
Figure 3-27b was calculated from Model LG, considering only local het-
erogeneity (particle aggregation) and assuming that the local voidage in
the cross-section is equal to the average voidage € in Figure 3-27a. Fig-
ure 3-27c was calculated with the assumption of uniform flow structure
on both local and overall scale. It is indicated that N takes to maxi-
mum if the system is uniform on both the local and overall scale. The
occurrence of local heterogeneity, as shown in Figure 3-27b, reduces Ny
considerably, as can be seen through comparison between Figure 3-27b
and Figure 3-27c, while overall heterogeneity (radial profile) promotes
minimization of Ng; further, as shown by the difference between Figure
3-27b and Figure 3-27a. In fact, the wall in concurrent-up two-phase
flow retards the upward movement of the particles, and plays a positive
role in energy minimization, and therefore, it causes radial heterogene-
ity. It was indicated that radial heterogeneity could be substantially
suppressed if a zigzag wall was used for hindering minimization of Ny
(Bie et al., 1992).

Radial heterogeneity not only results in the coexistence of the PFC
regime and the FD regime in the radial direction, but could also af-
fect the transition from the PFC regime to the FD regime in the axial
direction, that is, saturation carrying capacity is also subject to wall ef-
fect as mentioned by Kunii and Levenspiel (1969). For dealing with this
problem, the condition for this transition in a real unit may be modified
as follows

(W—St)(}vst)min = (Wst)(—ﬁst)mulcc=emf

indicating that axial and radial profiles affect each other. In theory,
the whole flow field of a particle-fluid two-phase system, including both
axial and radial profiles, can be calculated with the last equation and
Model OR if the operating conditions, material properties and boundary
conditions are specified. However, complete solution has not yet been
realized, and further effort is required.



Chapter 4

EXPERIMENTAL
EVIDENCE

To verify the computed results derived from the EMMS model, exper-
iments were conducted in a circulating fluidized bed which can be op-
erated through the whole regime spectrum of fluid-particle two-phase
flow. This chapter presents the experimental techniques employed and
the experimental evidences in terms of phase, regime, pattern and region.

4.1 Experimental Techniques

4.1.1 Experimental Apparatus

A plexiglass circulating fluidized bed, as shown in Figure 4-1, was used,
which consists of a riser, 10 m high and 90 mm 1.D., a downcomer, 120
mm I.D., a solids-gas disengager, two cyclones and two butterfly valves.
Twelve pressure taps and eleven probe ports are arranged alternately
along the height of the riser for measuring the axial voidage profile and
inserting signal probes into the riser.

Solids circulating rate can be adjusted by changing the opening of the
butterfly valve between the riser and the downcomer, or by changing the
solids inventory in the system. Gas flow rates are measured by means of

103
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rotameters, and pressure drop by a scanning transducer-valved system
which will soon be described.

1

et
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el |-
2\@::} B -
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090 mm @11 7] o120mm

/J’m

&

Figure 4-1 Schematic Diagram of Experimental Unit
1 — fitting; 2 — tap; 3 — riser;
4 — control valve; 5 — butterfly; 6 — downcomer

The solids used in the experiments were FCC catalyst (Ep = 54 um, pp, =
"929.5 kg/m?) fluidized by air.

By changing the solids inventory and gas velocity, the system can be
operated in the whole regime spectrum of fluid-particle two-phase flow:
particulate, bubbling, slugging, turbulent, fast and dilute transport, and
with different constitutions of regions: dense only, dilute only, or dense

and dilute.
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4.1.2 Measurement of Axial Voidage Profile

Axial voidage profile in the CFB is derived from pressure gradient which
is measured by means of a scanning transducer-valved system using only
a single pressure transducer and a two-body scanning valve as shown in
Figure 4-2. Each pressure tap is connected to both valves in such a way
that the N** tap is linked to the N** channel of valve A, but to the
N + 1** channel of valve B. When these two valves are controlled by a
computer to scan synchronously their channels, the pressure difference
between the N** and N + 1t* taps is measured in sequence.

Controller Amplifier Controller

|

Computer with
A/D,D/A

Figure 4-2 Scanning Transducer-Valved System for Pressure
Drop Measurement
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4.1.3 Measurement of Local Voidage

Most optical probes used in local voidage measurement (Qin and Liu,
1982; Boiarski, 1985; Hartge et al, 1986; Horio et al., 1988) are based on
back scattering of incident light. Both the incident light and the reflected
light are transmitted by optical fibers or fiber bundles. The intensity of
the back-scattered light measured by an optical detector is dependent
on the concentration of particles in the system, from which local voidage
is derived. According to Krohn (1986), the responses of different kinds
of optical probe configurations as shown in Figure 4-3 cannot reach zero
even if the reflector is far away from the probe because of their infinite
measurement volumes from which the probes collect the reflection.

2 e

Coaxial  Hemispherical Random Fiber Pair Single

Transmitting Leg
Light Source
1 \
1.0

> _______ Reflecting
Surface

Receiving Leg._ ’

0.8+ Detector

0.6

04}

0.2

Normalized Reflected Light Intensity

Front Slope X I ) ) . . .
0 25 50 15 100 125 150 175 200
Distance (0.001 inch)

0.0

Figure 4-3 Prevailing Configurations of Reflective Optical Probes (Krohn,1986)
1 — single fiber; 2 — coaxial fiber;
3 — random; 4 — hemispherical; 5 — fiber pair
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Figure 4-4 shows that the probe with an infinite measurement volume
can collect the reflection from the boundary of a bubble even if the
probe is located at its center, and can therefore not be used for local
measurement. Figure 4-5a shows further that the measurement volume
represented by the overlap region of the capture angles of two fibers is
infinite, and therefore, the localizability of measurement cannot be re-
alized. Moreover, the response of a probe to particle concentration is
usually not linear, and a standard voidage for calibration is difficult to
set up. For solving the above mentioned problems, the linearity and the
localizability of optical voidage measurement, which mainly depends on
fiber arrangement and the optical behavior of the fiber, were improved
by changing the angle between the incident fiber and the receiving fiber
to create a defined measurement volume as shown in Figure 4-5b (Reh
and Li, 1991).

It is clear that @ should be larger than 8 for a defined measurement
volume size of

é
lmax = deiI].E‘ + d_f?o_s__ﬂﬂ

2  tan(8 —0)

For high output and small probe diameter, Reh and Li used plastic op-
tical fibers (df =1 mm, numerical aperture N. A. =0.5) with very thin
claddings. Figure 4-6 shows the calculated characteristic curves for both
parallel (8 = 0°) and crossed (8 = 33°) probes, showing that the win-
dow of a crossed fiber probe should be arranged as close as possible to
the fiber ends to obtain the highest output. If the windows are made
of very thin glass plates (0.4 mm for this case), the characteristic curve
with the window can be considered to be the same as the one without
the window except for a cutaway section. This figure shows that the
angle factor ¢ of the crossed arrangement, defined as the ratio of the
received light power to the incident light power, decreases very quickly
from 20 % at the plane of the window to 0.2% at X2 = 4 mm, and then
reaches zero at about X, = 16 mm, as contrasted with a slow decrease
of the angle factor for the parallel arrangement, from 9% to 2%, in the
same range, and with its infinite continuation. Of course, the design of
a probe is subject to the characteristics of the fibers used (Reh and Li,
1991).
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Figure 4-4 Significance of Finite Volume in Voidage
Measurement by Optical Probes
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Figure 4-5 Comparison of Measurement Volumes between
Parallel Probe and Crossed Probe
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Figure 4-6 Comparison between Parallel and Crossed Fiber
Arrangements (df = 1.0 mm; d. = 1.0 mm;
N.A.=0.5; § =0.05 mm)

According to Figure 4-6, a crossed fiber probe was designed as shown in
Figure 4-7. Two end-polished fibers, one for the incident light from the
light source, and the other for the reflected light from the measurement
volume, are angled in a metal part at 3 = 33°, touching each other at
their tips, and then encased in a 6.0 mm O. D. stainless steel tube. The
inside of the 0.4 mm glass window is coated to avoid reflection. A par-
allel fiber probe was also constructed for comparison.

Experiments were performed to test the predi::ted characteristics of the
crossed fiber probe, and to show the importance of the localizability
for local voidage measurement by comparing these two different probes.
Characteristic curves for both the crossed fiber probe and the parallel
fiber probe, shown in Figure 4-8, were measured by setting a plane reflec-
tor in front of the probes and changing the distance between probes and
the reflector, showing reasonable agreement with the calculated curves

in Figure 4-6.



110 Jinghai LI and Mooson KWAUK

EY Fiber holder Covering. [ resin

N
”“lllll“ll“lllll\‘ |
Tube ¢6.0 mm Fiber ¢1.0 mm Giass Window 0.4 mm
LY L L L Ll L \/\/ P |
b
L ZLL Z

Figure 4-7 Comparison of Optical Fiber Probe Structures
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Figure 4-8 Measured Response Curves for Crossed and Parallel Probes
(d¢ = 1.0 mm; d. = 1.0 mm; N.A. =0.5; 6 = 0.05 mm;
calculated curves see Figure 4-5)
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Both the crossed and the parallel probes were tested and calibrated in
a 100 mm L.D. fluidized bed with 0~110 pum alumina particles. Signals
of local voidage from these two probes are shown in Figure 4-9. It is
indicated that the responses of the two probes to the same fluctuating
bed structure are quite different. Bubbles, to which the responses of a
probe should be zero, cannot be correctly detected by the parallel probe
because the reflection from the bubble boundaries causes a certain level
of output. This distortion becomes more and more marked with de-
creasing bubble size as shown for € — eps in Figure 4-9. However, the
crossed fiber probe can detect bubbles without distortion, even when
they are very small, due to its good localizability.

Parallel Probe Crossci Probe
RN | ]
o 3 b LY
3 mll
J‘ LA LA
( HEENEREEE
:
E
L9 !
I
I
L LI

-t

Figure 4-9 Local Voidage Signals Showing Distortion Caused by
Infinite Measurement Volume
{0 ~ 110 pm alumina in a 90 mm I.D. bed)

Reh and Li (1991) concluded from their optical voidage measurements,
that if the measurement volume of a probe is reasonably small, its re-
sponse to the bed density would approach linear. Calibration curves
shown in Figure 4-10a illustrate such characteristics of these two differ-
ent probes.
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Figure 4-10 Calibration Curves for Parallel and Crossed Probes
a — air/alumina: d, =0 ~ 110 um
b — water/glass beads: d, = 150 ~ 250 um

While the relationship between the average voidage and the output of
the crossed probe is close to linear, it is highly non-linear for the parallel
fiber probe. Particularly in dense-phase fluidization, the output of the
parallel probe changes only slightly over a wide voidage range (e.g., 0.46
~ 0.7), or even has the same value for two different voidages, indicating
poor sensitivity. This is because the parallel probe can not correctly
respond to bubbles, and is not response-maximized at the window plane
as shown in Figure 4-8. For the crossed probe, the near-linear response
curve is attributed to its good localizability.



Particle- Fluid Two-Phase Flow . 113

These two probes were also calibrated in a liquid/solid fluidization sys-
tem, showing linearity for both probes, as can be seen in Figure 4-10b.
Compared with Figure 4-10a, it is obvious that the behavior of optical
probes in liquid/solid and gas/solid systems are quite different. Cali-
bration from a liquid/solid system can therefore not be used directly for
measurement in a gas/solid system.

In using optical probes for measuring local voidage of fluid-particle sus-
pensions, it is also essential to know the size distribution of the particles
since the output of probes are considerably dependent on the size of
particles as shown in Figure 4-11. This feature is useful in detecting the
change of particle size distribution.

80

o Crossed
60 |—

O Parallel

Power Output of Probe  (4W)

20

L

0 ‘ L ®
A a e A

0 300 600 900 1200 1500

Diameter of Particles 4, (um)

Figure 4-11 Effect of Particle Diameter d;, on Probe Output
for Fixed Beds of Uniform Glass Beads

4.1.4 Measurement of Phase Structures

As mentioned in previous chapters, fluid-particle two-phase flow is char-
acterized by a two-phase structure consisting of a particle-rich dense
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phase (emulsion or cluster) and a fluid-rich dilute phase (bubble or
broth). For understanding such a heterogeneous structure, several pa-
rameters, such as voidage in the dilute phase ef, voidage in the dense
phase £, the volume fraction of the dense phase f and the dimension of
the dense phase [, should be evaluated.

Voidages &1, €. and dense phase fraction f can be determined approxi-
mately by using the above mentioned optical fiber probe. Figure 4-12a
shows the instantaneous response of a crossed optical probe to bed den-
sity in a fluidized bed and the corresponding probability density dis-
tribution p(e) with its integral [} p(e)de called probability distribution.
There are clearly two peak values and a valley value on the p(e) curves.
These two peaks corresponds to € and €. respectively, and the valley
can be considered to represent the boundary between the two phases,
and therefore, the value of the probability distribution [f p(e)de corre-
sponding to the valley defines the volume fraction of the dilute phase

(1-17).

Figure 4-12b shows by comparison the measurement results by a paral-
lel optical fiber probe, and recapitulates the distortion shown in Figure
4-8, for which &¢ cannot reach unity since the localizability of voidage
measurement by the parallel optical probe cannot be guaranteed.

The phase dimension is difficult to measure, that is, the diameter of
bubbles when the dense phase is continuous, and the size of clusters
when the dense phase becomes discontinuous. Much has been reported
concerning the measurements of bubble diameter and cluster diameter.
For measuring cluster diameter, the cross correlation method was used,
which gave however only the dimension of a cluster in the vertical direc-
tion. For direct observation of clusters, Qin and Li (1991) designed an
optical fiber micrograph probe connected to a videocamera. The signals
from videocamera were collected on an image processing plate, and then
displayed on a TV monitor. Figure 4-13 shows the observation of clus-
ters of Li et al. (1991) in a fast fluidized bed at different radial positions
and under different operating conditions. The existence of clusters is
obvious even in the core region of the bed.
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840 131 9‘,25
8.40 262 5135
840 3.49 64.65
477 131 17.32

477 175 830

477 349 30.05

Figure 4-13 Variation of Cluster Structure with Operating Conditions,
Radial and Axial Positions (Li et al., 1991)

In fact, the dimension of bubbles or clusters is not so critical to fluid-
particle contacting, as the exchange between the two phases, such as
results from the alternate dissolution and reformation of clusters. This
appears to be a key factor for future studies.

4.1.5 Measurement of Particle and Fluid Velocities

Global Average Fluid and Solids Velocity Global average veloc-
ities of both fluid and solids are independent parameters belonging to
operating conditions. The measurement of average fluid velocity is more
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or less standardized, using rotameter, orifice, etc. The measurement of
average solids velocity can be conducted by inserting a screen-type but-
terfly valve into the loop. The average velocity which is correlated with
solids circulating rate can be deduced from the rate of increasing pres-
sure drop above the valve after it is closed. A simple method for such
measurement was proposed by Wu et al. (1993), in which one strain
gauge is mounted directly on the butterfly valve and another on the
inside wall of the unit (to eliminate the effect of gas flow), as shown
in Figure 4-14. When the butterfly valve is closed, the output of the
Wheatstone bridge, consisting of the two strain gauges and two stan-
dard resistances, increases linearly with time, as shown in Figure 4-15.
The slope of the output curve corresponds to the solids flow rate. Solids
flow rate can also be measured by by-passing the particles into a collector
for weighing. However, the operating conditions are thereby disrupted.

Strain Gauge 1

. A
Strain Gauge 2 Po+Gught

Butterfly Valve

Riser

Figure 4-14 Measurement System for Solids Flow Rate
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Figure 4-15 Increasing Wheatstone Bridge Output During Solids
Flow Rate Measurement

Local Particle Velocity The local fluid dynamic state in CFB is
characterized by the time dependence of not only particle concentra-
tion but also particle velocity. Nevertheless, neither the directly time-
averaged value nor the arithmetic expectation value of particle velocity
at different time is a true representation of the average particle velocity.
The reason resides in the definition of

G,

Uy = ———
P Pp(l—e)

(4.1)

where (1 —¢) is the time-averaged particle concentration, G; is the time-
averaged solids flux, defined respectively as

1 T
e=z /0 £(t)dt (4.2)

and
T T
G, = 51,-/0 Gy(t)dt = %,‘3/0 up(t)[1 — £(t)]dt (4.3)

Substituting G into Equation 4.1, we have
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T T
up = T(Tlf?) /0 up ({1~ e(#))dt # /0 wp()dt  (4.4)

The above equation implies that time averaging of the instantaneous
particle velocity has to be weighted with respect to particle concentration

at the same time, though the average superficial velocity can be averaged
directly over time, that is,

Us = up(l —¢) = / Ua(t)dt (4.5)

Therefore, local average particle velocity can be obtained by either of
the following two ways:

1. Measuring real velocity and bed structure simultaneously, and then
calculating the particle-concentration-weighted average of the real
velocity;

2. Measuring superficial velocity or fluz, and then averaging directly
over time.

The cross-correlation method, correlating the signals from two different
points located a specified distance apart, supplies approximately the real
particle velocity which should not, however, be time-averaged directly.
Bed structure has to be considered for getting the average particle veloc-
ity. For the momentum method, the signal is related to the momentum
of the particles, that is, Uappup, which is a mixed term consisting of
both real and superficial velocities, and too, cannot be averaged over
time.

According to the above analysis, an integral voidage/momentum probe,
shown in Figure 4-16a, was designed by Qian and Li (1993). It consists
of an optical fiber voidage probe having near linear response character-
istics to bed density (Reh and Li, 1991), mounted very close to a pair
of strain gauges. Strain gauge 1, which is very close to the measure-
ment volume of the optical probe, responds not only to upflowing but
also to downflowing particles, while strain gauge 2, which is paralle] to
the direction of flow, is used for temperature compensation. These two
strain gauges are connected with two standard resistances to form a
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Wheatstone bridge to respond to the instantaneous dynamic pressure of
particles. The simultaneous voidage and dynamic pressure signals were
sent to a computer for data acquisition and processing. The instanta-
neous dynamic pressure of particle-fluid two-phase flow is attributed to
both particle and gas, represented as

P(t) = 5 {pe(®)ud () + ppl1 — O (2)} (46)

For the case of high particle concentration, the dynamic pressure of gas
can be neglected, and the instantaneous particle velocity can be obtained
from the corresponding instantaneous voidage £(t) and dynamic pressure

P(t) as follows:
_ 2P(t)
up(t) = \/-—————pp[l Y (4.7)

For very dilute suspensions, up(t) = u¢(t), the contribution of the gas to
P(t) should be taken into account, and u,(t) can be expressed as

_ 2P(2)
uplt) = \[pp[l O+ e (48)

By assuming that the strain gauge responds to the impact of particles
as gas with the same dynamic pressure, the momentum sensor could
be calibrated against the dynamic pressure of air flow measured by a
pitot tube, as shown by the curve in Figure 4-16b. The optical probe
was calibrated by correlating the probe output at minimum fluidization
and that in pure air by assuming a linear relation. By programming
the computer with the above correlations and calibrations, the instanta-
neous values of voidage, particle dynamic pressure, real particle velocity
and superficial particle velocity can be obtained on line, thus yielding
the average particle velocity as defined by Equation 4.4. The probe was
tested in a CFB of 75 mm IL.D. and 10 m high with FCC (d, = 54 pm,
pp = 930 kg/m?) fluidized by air.
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Figure 4-16 The Integral Voidage/Momentum Probe
a — probe configuration (1 — optic fiber;
2 — fiber fixing; 3 — optical glass;
4 — strain gauge 1; 5 — strain beam;
6 — wires; 7 — sheath;
8 — resin; 9 — strain gauge 2)
b — calibration

Figure 4-17a shows the output signals of the optical fiber sensor and the
strain gauge Wheatstone bridge (H = 6.5 m, r/R = 0.8). The voidage
signal shows the alternate change of dense phase and dilute phase in
CFB, while the dynamic pressure signal is subject not only to voidage
but also to particle velocity, therefore showing another pattern of change.

Figure 4-17b shows the instantaneous particle real velocity and the cor-
responding superficial velocity deduced from Figure 4-17a according to
Equation 4.7 and 4.8. Compared to Figure 4-17a, Figure 4-17b also in-
dicates the two-phase flow structure—high superficial velocity and low
real velocity in the dense phase, but the opposite in the dilute phase.
The time-series of real particle velocity in ‘Figure 4-17b was averaged
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directly over time, resulting in an average value of 0.79 m/s. However,
a value of 0.53 m/s was obtained when the time average was weighted
with respect to bed deunsity as shown in Figure 4-17a.
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Figure 4-17 Probe Outputs and the Deduced Velocities
a — probe outputs; b — deduced velocities

4.1.6 Measurement of Gas Backmixing

Particle downflow causes gas backmixing in vertical concurrent two-
phase flow, which affects the performance of a chemical reactor. Some
understanding on flow patterns could be gained from gas backmixing
(Stephens et al., 1967; Nguyen et al, 1981; van Deemter, 1980; 1985;
Cankurt and Yerushalmi, 1978; Brereton et al., 1989; Jin et al., 1992)
to supplement, or in the absence of, local fluid and particle velocity
measurement. Though the backmixing method does not give a true
description of flow pattern, it provides some evaluation of reactor per-
formance.

Two methods are available for measuring gas backmixing in fluidized
‘beds: upstream pulse injection of a tracer gas for measuring residence



Particle-Fluid Two-Phase Flow 123

time distribution of the gas, from which the axial gas dispersion co-
efficient is deduced, and downstream continuous injection of a tracer
gas for measuring upstream tracer concentration profile, from which the
axial gas dispersion coefficient can also be obtained. Figure 4-18 com-
pares these two methods. Downstream injection insures a steady tracer
concentration profile for accurate measurement, but tracer consumption
is high. Though upstream pulse injection saves tracer gas, it calls for
dynamic measurement and is therefore complicated. - Selection of the
measurement method depends on the characteristics of the system stud-
ied. If backmixing is slight and the system rather homogeneous, the
pulse injection is generally used. Otherwise, the steady injection is pre-
ferred.

Injection ——mw—on——

Sampling —— ——es———

Figure 4-18 Tracer Injection Methods for Studying Gas Backmixing
a — downstream steady injection;
b — upstream pulse injection

Li and Weinstein (1989) selected the steady injection method for com-
paring gas backmixing characteristics in different fluidization regimes,
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in a high-velocity fluidization facility, 0.152 m in diameter by 8 m tall,
using helium as the tracer gas in order to eliminate gas adsorption by
the bed material they used, Engelhard craking catalyst FFZ-33 (p, =
1450 kg/m3, d, = 59 um). A steady stream of tracer gas was injected at
a single point by a traversing probe which could be located at seven dif-
ferent radial positions, as shown in Figure 4-19. Tracer gas was injected
consecutively at all these seven points to give seven different samples for
four fixed radial sampling locations of each sampling probe. By chang-
ing the solids inventory or the solids rate, it was possible to have the
injector located in the top dilute, the middle transition or the bottom
dense region, even though its elevation was fixed. Sample probes were
located at three elevations below the injector. The inlets of the probes
were covered by cylinders of porous sintered metal. The combination
of the sampling probe position number and the injector location letter
shows the condition of sampling and injection. For example, A1 means
sampling gas with the first probe when the injector is located at both
positions A.

A:r/ R=0389
'y B:r/R=2/3
Y ) C:r/R=1/3
AB CD 2 2; D:r/R=0 Traversing
Tracer Inlet
I E Probe
a} Sample Probe
|11 1 X
£
| 11 - - 2
§
"
(1]

[ 11 >_JL 3

Figure 4-19 Positions for Downstream Injection and Upstream
Sampling in Experiments of Li and Weinstein (1989)
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The sample gas and the reference gas from the bottom of the bed were
drawn into an on-line GOWMAC thermal conductivity analyzer con-
nected to a computer-based data acquisition system. For each run, the
axial voidage profile was observed and adjusted in order to locate the
injection probe in the desired region. Data used to obtain the axial
voidage profile were taken simultaneously with the backmixing data in
order to correlate the mixing measurements with the bed structure.

The effects of the completely mixed helium injection concentration, C,,
on gas backmixing was investigated first to determine the optimal value
of the injection concentration with respect to linearity and detectability
for each flow régime. The response of the helium concentration at sev-
eral points to changing injection concentration is shown in Figure 4-20
for the dense region of fast fluidization. The variation of C with C,
is linear only at the lower values of C,, particularly for probe position
Al. Therefore, the injection concentration was limited to a maximum of
about 0.7 % in this regime. For all other regimes appropriate limits were
set by testing. In general, the lowest C, possible was used considering
the detectability of helium with the analyzer.
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Figure 4-20 Dependence of Backmixed Tracer Concentration
on Average Injection Concentration
(fast fluidization regime: r/R = 0.922, U, = 2.8 m/s,
G, =200 kg/(s-m?), I = 2.5 m)
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4.2 Experimental Results

4.2.1 Phase Structure

Figure 4-21 shows the time series of local bed voidage taken with a
reflection-based optical fiber probe designed by Qin and Liu (1982) which
was located at the center of the bed. High voltage value represents high
bed density, and zero voltage corresponds to bubbles or the dilute phase.
In the bubbling and slugging regimes, the local voidage changes period-
ically at a low frequency. With increasing expansion, the fraction of
the dense phase decreases, demonstrated by a decrease in the high volt-
age component. No essential difference exists between the bubbling and
slugging regimes except that local turbulent behavior can be noted only
occasionally in the slugging regime. When slugging is succeeded by tur-
bulent fluidization as velocity increases, high-frequency random changes
replace the periodic low-frequency changes. The waveform of the signal
in the fast regime is almost the same as that in the turbulent regime.
In the above-mentioned regimes, the peak-to-valley ratio of the signals
remains constant, implying that both the dense-phase voidage and the
dilute phase voidage remain more or less constant, and change in overall
bed voidage can therefore be attributed merely to change of the volume
ratio of the two phases. When the dilute transport regime starts. such a
situation is totally changed-—the voltage for the dilute-phase increases,
and the dense-phase almost disappears. This results in a more or less
uniform structure demonstrated by the rise of the base line of the signal
above zero. Such a jump change in bed structure is consistent with the
prediction in Figure 3-13.

Figure 4-22 shows the values of ¢, €¢, and f in a two dimensional flu-
idized bed of FCC catalyst, determined by using the method described
in Section 4.1.4, also showing the constancy of both &4, and . and a
steady decrease of f with increasing gas velocity, and verifying the cal-
culated results in Figure 3-4.
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Different Regimes (FCC/air)
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4.2.2 Regime Transition
Bed Structure

Figure 4-21 shows three types of flow structures which often exist in
fluidization of fine particles: Low-frequency-periodic in bubbling and
slugging fluidization, high-frequency-random in turbulent and fast flu-
idization and near-uniform in dilute transport. Comparison of these ex-
perimental phenomena with the theoretical analysis in Chapter 3, yields
the following indications:
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1. In low velocity fluidization, as analyzed in Section 3.4, where the
fluid and the particles compromise with each other, the particles
still retain some dominance, and the fluid compromises more ac-
tively with the less mobile particles in the emulsion phase, as demon-

strated by a low-frequency periodic structure of the particle-fluid
system.

2. With increasing velocity and momentum of the fluid, the particles
continue to lose their dominance, as the continuous dense phase
begins to be broken up, until at f = 0.5, discrete clusters are formed
which can compromise flexibly with the fluid. At this stage, both
the fluid and the particles are equally active in compromising with
each other, resulting in the formation of a high-frequency random
structure. With further increase in the velocity and momentum of
the fluid, the fluid begins to take over the particles in dominating
the system.

3. As soon as the fluid fully dominates the particles, in the transport
regime, the system becomes nearly uniform.

Auto-Correlation Coefficient (time-dependent)

Figure 4-23a was obtained by analyzing the data in Figure 4-21 statisti-
cally with a spectrum analyzer in terms of the auto-correlation coefficient

defined as
T
Rx(r) = lim = | x@x+na
T-oo T Jo

which represents the linear dependence between two states of the same
process at two different time transients, that is, ttme-dependence of flow
structure. In Figure 4-23a, Ry is the normalized Rx(7), Rxx being
equal to unity at v = 0. For random signals, Ryx should tend toward
a constant when 7 — oo, implying that the two states of this process
at two different time transients are not dependent of each other. On
the contrary, for the periodic process, R,y will also be periodic with the
same frequency as the original signal. From the change of the auto-
correlation coefficient, we can deduce the time-dependent behavior of
the local states in fluidization systems. Corresponding to the changes
of bed structures, three types of time-dependent behavior are therefore
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seen to exist in the whole spectrum of fluidization regimes: periodi-
cally strong dependence in the low expansion regime for bubbling and
slugging, random weak dependence in the high expansion regime for tur-
bulent and fast, and high constancy in the dilute transport regime with
near-uniform structure.
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Figure 4-23 Correlation Coefficients in Different Regimes (FCC/air)
a — auto-correlation Ryy; b — cross correlation R,
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Such changes of flow structure verify the predicted characteristics of the
PFC and the FD operations.

Cross-Correlation Coefficient (space-dependent)

Figure 4-23b shows the cross-correlation coefficient of voidage signals for
two different points at a distance of 0.5 m apart, defined as

T
Ruy(r) = Jlim 7 [ XY (e +r)a
which represents the linear dependence between two signals from two
different locations. Ryy is the normalized Ryy(7). Compared with the
auto-correlation coefficient reflecting time dependence of the process, the
cross-correlation coefficient stands for space-dependence. By evaluating
both auto-correlation and cross-correlation coefficient, it is possible to
identify the change in structure for fluidization systems. It can be seen
from Figures 4-23a and 4-23b that the cross-correlation coefficient dis-
plays a similar change as the auto-correlation coefficient except for a
sudden decrease in the dilute transport regime which indicates indepen-
dence in behavior of the two points in space.

Slip Velocity

Figure 4-24 .shows the change of slip velocity averaged over the cross-
sectional area, defined as b

= G
Us=U; — ———m—
TR (1-9)pp

where £ is an average bed voidage determined from the axial voidage
profiles, to be shown later in Figure 4-31 and Figure 4-33, averaging be-
ing carried out separately for the bottom dense region and the top dilute
region. No significant change can be found in the range of turbulent and
fast fluidization. With the onset of dilute transport, however, U, drops
suddenly to a relatively low value toward the terminal velocity U; of
the particles. It is worthwhile to note that in the saddle area below the
dashed line two states co-exist for Mode PFC/FD of Figure 3-4, a dense
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PFC region at the bottom of the bed, and a dilute FD region at the
top, joined together to form an S-shaped axial average voidage profile.
The saddle area contains a family of tie lines; each terminating into the
PFC region at the left and the FD region at the right. The change of
slip velocity demonstrated in Figure 4-24 is consistent with that shown
in Figure 3-9b except for the difference in approach to U; in the FD
regime, which is attributed to the assumption of ideality in Figure 3-9b.
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a — FCC/air (p, = 930 kg/m3, d, = 54 pm);
b — hollow glass beads/air (p, = 609 kg/m?, d, = 75 um)
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Radial Voidage Profile

Figure 4-25 was developed from data obtained in the same experimental
unit operating under the same conditions as for Figure 4-21 and with the
same optical probe which was calibrated by the method developed by
Tung et al. (1988). For the bubbling and the slugging regimes, because
of insufficiently developed particle downflow, the non-uniform profiles
were mainly caused by the centripetal movement of bubbles. Although
a certain degree of radial heterogeneity is caused by the wall, the PFC
regime could be preserved in the center, and therefore, the radial profiles
of local voidage are consequently rather flat. With the onset of turbulent
fluidization, discrete bubbles no longer exist in the system, and gas flows
mostly through the center of the unit. Such a gas flow pattern causes the
disparity of flow structure between the core and the wall regions, that
is, fluid-dominating (FD) in the core and particle-fluid-compromising
(PFC) in the wall region, and enhances the circulation of particles—up
in the center and down near the wall, therefore, creating remarkably
steep voidage profiles. With the development of the
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Figure 4-25 Radial Profiles of Average Voidage in Different
Regimes (FCC/air)
1 — transport; 2 — fast; 3 — turbulent;
4 — slugging; 5 — bubbling

highly expanded regime from turbulent to fast, particle downflow be-
comes more and more extensive and the core FD region is extended to
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the wall until a nearly flat voidage profile appears suddenly at the onset
of dilute transport when the FD regime prevails essentially in the whole
cross-section.

Gas Backmixing

Figure 4-26 also confirms the prediction of different flow structures in
different regimes. Figures 4-26a and Figure 4-26b show the measure-
ment results of gas backmixing in the bubbling and slugging regimes
respectively, which are often referred to as low velocity or low expansion
fluidization regimes. Comparing these regimes, no significant differences
in the concentration profiles are found between wall injection, A, and
centerline injection, D, except for the response of the first probe quite
near the injection point. In these two regimes, the radial profiles of con-
centration are essentially flat and the injection position does not exert
much significant effect on gas backmixing, and the dimensionless concen-
tration C/C, is almost independent .of gas velocity (Li and Weinstein,
1989).

With the transition from the slugging regime to the turbulent regime,
high velocity fluidization begins, and different gas flow patterns are evi-
dent. These are caused by and/or are the result of spatially distributed
heterogeneity. The righthand side of Figure 4-26c shows results in the
turbulent dense-phase regime. Different from the slugging regime, sharp
radial concentration profiles exist, and the injection position has a great
effect on the measured gas backmixing. For position C, the detected
concentration is very low, and it is too low to detect for position D. Gas
backmixing mainly results from the downflow of solid particles near the
wall. The tracer gas concentration in the dilute core region is mainly due
to exchange between the core region and the annular wall region. Gas
backmixing in the transition or bed surface region of a turbulent bed is
shown on the lefthand side of the figure. Although the injection point
is located in a relatively dilute region, the extent of gas backmixing is
not much less than in the turbulent dense region. Therefore, particle
downflow in this transition region must be extensive.

In the fast fluidization regime at even higher gas velocities, the dilute
core region extends further toward the wall, and the particle downflow
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Figure 4-26 Experimental Results on Gas Backmixing in Different
Fluidization Regimes
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near the wall becomes even greater. These changes affect the concentra-
tion profiles as shown on the righthand side of Figure 4-26d. It can be
seen that tracer concentration near the wall is much higher than that
in the turbulent regime, but the concentration in the dilute core region
is much lower. Injection in the core region produces a very low level
of backmixed tracer concentration, even undetectable for the center in-
jection. In this regime, the injection position has an even more critical
effect on the concentration profile than in the turbulent regime. There-
fore, the assumption of gas plug flow in the fast regime is not appropriate
for the whole bed but only for the core. Note that circumferential mix-
ing in the annular region is still measurable. The lefthand side of Figure
4-26d shows backmixing in the transition region, indicating that exten-
sive backmixing prevails in the annular wall region. '

Results for the dilute transport regime are shown in Figure 4-26e, demon-
strating that there still exists an annular region near the wall in which
gas backmixing due to solid downflow is considerable. The concen-
tration of backmixed tracer gas is still detectable at probe position 2,
28 cm (L/D = 2) below the injection point. The dependence of back-
mixing on velocity is, however, strong in this regime with maximum
C/C, readings down by a factor of 6 with an increase in gas velocity
from 2.8 to 4.0 m/s. In this regime, the difference between injection,
A, and injection, B, becomes slight compared with the fast fluidization
regime.

Figures 4-27 compares gas backmixing between different regimes, indi-
cating the different mechanisms of gas backmixing in different fluidiza-
tion regimes shown by quite different radial profiles of C/C, at both
probe position 1 and position 2: almost flat in the low velocity fluidiza-
tion regimes, bubbling and slugging, very sharp in the high velocity
fluidization regimes of turbulent and fast fluidization, and again flat in
the dilute transport regimes, thus verifying the regime classifications in
Section 3.4 and corresponding to the three types of bed structure noted
at the beginning of Section 4.2.2.

Li and Weinstein(1989) calculated values of D, as shown in Figure 4-28.
In the low-velocity regimes, D, is nearly proportional to gas velocity.
These values agree well with those of van Deemter (1985) and Latham
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Figure 4-28 Axial Dispersion Coefficient as a Function
of Gas Velocity over the Regime Spectrum

and Potter (1970), also shown in the figure. In the dense high-velocity
regimes, the dependence of D, on gas velocity becomes much less pro-
nounced, and it appears that in the dilute transport regime D, drops to
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rather low values.

The two data points for the transition region between the top dilute and
the bottom dense regions indicate a strong dependence on gas velocity,
but the evidence is insufficient to make such a conclusion. The real
significance of these values is that they indicate that backmixing in the
transition region is almost as strong as in the dense region itself.

The three data points in the dilute transport regime show that back-
mixing in this regime is small but not negligible. These values are the
least reliable of the set of D, values because the corresponding measured
concentrations were the lowest. However, their magnitudes can be con-
sidered to be correct.

4.2.3 Pattern Change

Experiments indicated that liquid/solid fluidization can also be aggrega-
tive under certain conditions, for instance, the appearance of liquid voids
or particle clusters (Wilhelm and Kwauk, 1948). Yu (1986) compared
the fluidization behavior of different liquid/solid systems consisting of
water and the following particles:

particles  dp (pm) pp (kg/m?)
Sand 250 ~ 440 2620
Magnetite 160 ~ 183 4900
Iron 107 ~ 142 7800
Copper 150 ~ 160 8900

In Figure 4-29 his experimental results were rearranged according to
increasing particle density: (a) shows the uniform or particulate flow
structure with sand particles, (b) shows initial change of flow behav-
ior from particulate to aggregative pattern, demonstrated by the devia-
tion of experimental points from the linear log-log relationship between
voidage and fluid velocity due to increase of particle density, (c) and (d)
show obvious aggregative behavior in fluidized beds with high density
particles characterized by a sudden and dramatic increase in voidage at
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some critical fluid velocities. It can be concluded that L /S fluidization
systems transit gradually from particulate to aggregative with increasing
pp/ps as predicted by Kwauk (1957) and in Figure 3-21.

a ] '
-1
-2
w
2 -3
-4
-5 L 1 i L L

1.3 L5 -l -5 o 5 1. 15
log Uy (cm/s) log U, (cm/s)

Figure 4-29 Increasing Aggregative Behavior of L/S Systems with
Increasing pp/ps (Yu, 1986)
a — sand/water (dp = 250 ~ 440 pm, p, = 2620 kg/m?);
b — magnetite/water (d, = 160 ~ 183 um, p, = 4900 kg/m?);
¢ — iron/water (d, = 102 ~ 142 pm, pp = 7800 kg/m3);
d — copper/water (d, = 150 ~ 160 um, p, = 8900 kg/m?)

Pattern change can also take place with change of fluid viscosity as re-
ported by Harrison (1961) and with change of pressure which affects the
value of p,/p¢, as demonstrated in pressurized fluidized beds. Recently,
Knowlton (1992) reviewed the effect of pressure, temperature and vis-
cosity on fluidization systems, and pointed out that fluidization becomes
smoother when beds are operated at high pressures. The information
on the effect of temperature on bubble size is somewhat inconsistent, as
Knowlton mentioned, being the mixed effect of gas density and viscosity
which are both affected by temperature.
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4.2.4 Region Distribution

A typical fluid-particle two-phase flow system, such as the circulating
fluidized bed, is characterized not only by local heterogeneous flow struc-
ture but also by overall distribution of bed density in both the axial and
the radial direction.

Axial Direction

Li and Kwauk (1980) noted two regions in the S-shaped axial voidage
profile in fast fluidization: a dilute-region at the top with an asymptotic
voidage €* and a dense region at the bottom with another asymptotic
€a- Between these two regions, there exists a transition zone in which
the inflection point of voidage Z; is located. Depending on material
properties and operating conditions, the length of this transition zone
is characterized by a so-called characteristic length Zp which can be
correlated to (¢* — €,) empirically as follows (Li et al., 1982):

Zy = 500 exp [—69(e* — €,)]
Then, the axial voidage profile can be represented by

E_ea

2 = expl—(z — 2)/Z]

e* —

Weinstein et al. (1983) reported that axial voidage profile is also depen-
dent on the imposed pressure drop across the bed AP,np, that is, the
position of the inflection point Z; is affected by the solid inventory in
the system. From pressure balance, Z; can be expressed as

— prg(l - Ea.) - A-lep

Z;
(e* — Ea)Ppg

It is clear that the axial voidage profile can be calculated if ¢* and ¢, are
known, for which Li and Kwauk recommended the following correlations:

* +1.68770.0286
18Rep + 2.7Rep

e =0.924 e
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where
dyps e*
Ry = 22 [0, va (755
P T \1-¢
d3pe - -
Ar = pPt g(lz’p Pt)
K
and
18Rep, + 2.7Rel,67870:0741
sa=0.756[ ‘e °pa
Ar
where

dpp
e = St (o= (7255

Li et al. (1988) studied the dependence of axial voidage profile on G, Ug.
and APy in a circulating fluidized bed of 90 mm I.D. by using the scan-
ning transducer-valved system. The imposed pressure drop A Pyyp was
altered by changing the solids inventory I, or by manipulating the solid
rate-control valve.

Figure 4-30 shows the dependence of axial voidage profiles on gas veloc-
ity. If the gas velocity increases without changing the solid inventory,
the difference between the bottom dense region and the top dilute re-
gion will reduce, accompanied by an increase of solids flow rate, until
the difference disappears. It is evident that solids flow rate is dependent
on gas velocity.

Figure 4-31 verifies the prediction in Figure 3-4, showing the dependence
of axial voidage profiles on solids inventory for FCC (pp = 929.5 kg/m3,
d, = 54 pm). Two kinds of voidage profile curves are shown. The curves
for I = 15, 20 kg in Figure 4-31a and I = 15, 20, 22 kg in Figure 4-31b
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(FCC/air: I = 40 kg; G5 = max)

are S-shaped, with the co-existence of two regions, and transition occur-
ring inside the unit, while solid can be fed at the bottom of the bed at
saturation flow rates. Variation of solids inventory I does not result in
any change of G, €* and £,, but only displaces the position of the inflec-
tion point Z; . Solids rate G; is always equal to the saturation carrying
capacity at the corresponding gas velocity (K* = 14.3 kg/(m? - s) for
Ug = 1.52 m/s; K* = 24.1 kg/(m? - s) for Uy = 2.1 m/s). Asymptotic
voidages for the dilute and dense phases, €* and ¢, respectively, are only
functions of Uy and relevant material properties.

At Gy = K™, any change in the opening of the solid-rate control valve
can only upset the initial equilibrium temporarily. For instance, if the
opening is decreased, the input solid rate becomes smaller than K* tem-
porarily. However, the output solid rate still remains at K*, thus,
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Figure 4-31 Axial Voidage Profiles for System FCC/air
(* data used in Figure 3-7)

depleting the fast bed of solids. Meanwhile the voidage of the dilute
region at the top £* also remains constant. As a result, the dilute-phase
region extends toward the bottom of the bed. The excess solids which
have thus far been removed from the fast bed have accumulated in the
slow bed, thus increasing the imposed pressure at the bottom, forcing
more solids flow into the fast bed. This dynamic process continues until
G, equals K* again, but at a new equilibrium position of the point of
inflection Z;, which is lower than before.

On increasing I, the inflection point in the axial voidage profile will
move upward until it passes beyond the top of the bed. In the latter
case, Gg > K™, and a new operating region is reached, in which the axial
voidage profiles are no longer S-shaped, as shown by all the curves in
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Figure 4-31c and by the curves for I = 25, 35, 40 kg in Figure 4-31a
and 4-31b. On the other hand, decreasing I will make the inflection
point Z; move downward until it passes beyond the bottom of the bed,
with G < K*. In this operating region, the flow pattern becomes
dilute transport , and neither is the voidage profile S-shaped. In the two
operating regions for G; < K* and Gs > K*, G, is independent of U,
and can be changed independently. Therefore, the bed voidage would
be related to both Uz and Gs; axial voidage profiles are not S-shaped;
and any change in I would result in a corresponding change in G,.

10

Height (m)

0306 08 10 1.z 14
Voidage
Figure 4-32 Variation of Axial Voidage Profile with Gas

Velocity at Constant Solids Flow Rate
(FCC/air: I = 30 kg; G, = 25 kg/(m? - s))

If the solid-control valve is fully closed at the state of an S-shaped pro-
file, the local states of both regions will not change, however the top
dilute region will extend toward the bottom with a constant solid flow
rate K* until the dense region disappears, the whole bed becomes dilute,
and the particles in the bed start to be blown out, and finally the bed
becomes empty.
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Figure 4-32 shows the dependence of axial voidage profile on gas velocity
at a fixed solids flow rate. If we reduce the gas velocity of the state with
an S-shaped axial voidage profile, the inflection point will immediately
disappear, showing the unique relation between Uz and K*. Figure 4-
33 gives experimental results with hollow glass beads, showing changes
similar to Figure 4-31 for FCC particles.

Figure 4-34 outlines the characteristics of axial voidage profiles, accord-
ing to which, the operation of fast fluidized beds was classified as three
operating modes (see Section 3.3 and Figure 3-8) on the basis of the
three variables, U; and Gs; and AP,n,. Zone PFC/FD in the saddle
area of Figure 4-34a is that for the co-existence of two flow regions with
Gs = K*, for which the constant-Ug curves are horizontal lines. Zone
PFC toward the right is that for the single dense region with G5 > K*,
and zone FD toward the left, for the single dilute region with Gy < K*.
Point I, represents the minimum solids inventory for the development
of two flow regions. Point D is the critical point for S-shaped axial
voidage profiles. If Uy is larger than the gas velocity corresponding to
this point, the S-shaped axial voidage profile lapses into single dilute
region flow. On the other hand, if G, is larger than the solid flow rate
corresponding to point D, the S-shaped axial voidage profile is replaced
by single dense region flow.

It is easy to see that zone PFC/FD in Figure 4-34a corresponds to oper-
ation at choking, that is, Uy = Uy and G5 = K™, and the righthand side,
or zone PFC, corresponds to the operation of Uy < U, and G; > K*
in the PFC regime, and the lefthand side, or zone FD, the operation of
Ug > Upt and G5 < K* in FD regime.

Experiments also indicated that at any constant gas velocity, S-shaped
profiles can exist only within certain limits of I, as represented by the
saddle-shaped boundary of zone PFC/FD in Figure 4-34a. Thus to
realize a given mode of operation, the necessary global conditions need
to be satisfied in addition to intrinsic fluid dynamics. Bed height can also
affect axial voidage profiles, as already noted above. The smaller the bed
height is (H < H'), the shorter the horizontal section of Gs = f(Ug, I) is
in Figure 4-34a, and more difficult it is to develop the S-shaped profile.
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for Different Operating Modes
a — FCC/air; b — HGB/air

Additional data in Figure 4-34b for hollow glass beads further identify
the three operating modes just enumerated above and discussed in Sec-
tion 3.3.

The importance of the parameter K* is evident. It is not only the basis
for differentiating operating modes, but also the necessary condition for
the existence of S-shaped axial voidage profiles, and defines, also, the
critical value of solid rate for the transition between dense fluidization
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Figure 4-35 Cross Plots of € ~ U; ~ G, Relation to Show Choking
a — FCC/air; b — hollow glass beads/air

and dilute transport. In fact, the S-shaped axial voidage profile rep-
resents the critical state for this transition. Therefore, this transition
can be determined conveniently through experiments yielding S-shaped
voidage profiles. The relationships between Ug, € and G in Figure 4-31
and Figure 4-33 can be replotted into Uy ~ € and G5 ~ € regime di-
agrams in Figure 4-35 for FCC/air system and hollow glass beads/air
system to further accentuate the choking phenomenon.

Radial Direction

Radial heterogeneity promotes backmixing of both fluid and particles,
and plays an unfavorable role in fluid-particle contacting. It therefore
gives rise to wide attention (Monceaux et al, 1986; Weinstein et al.,
1986; Hartge et al., 1986; Bai et al., 1988; Tung, et al., 1988; and Horio
et al., 1988).
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Figure 4-25 already showed typical radial voidage profiles in different
fluidization regimes, indicating significant difference of bed density be-
tween the wall region and the core region. Figure 4-36 shows the spatial
distribution of low structure by illustrating the probability density dis-
tribution at different radial locations, indicating that the volume frac-
tion of the dense phase increases from the core to the wall, and showing
once again that the core region and the wall region operate in different
regimes.

It was considered that the shape of the radial voidage profile curve de-
pend on the cross sectional average voidage £, and can be represented
by the following correlations for FCC catalyst (Tung et al., 1988) :

e(r/R) = g(¢*+0.191) ¢=r/R<0.75

e(r/R) = 3626°4740.19) ¢ — /R > 0.75

Of course, the above correlations apply only to the case with symmetri-
cal radial voidage distributions. For large units, the radial distribution is
often asymmetrical, and may display even a multi-peak configurations
(Squires et al., 1985). Further work is needed for characterizing such
distribution.

Figure 4-37 shows the measured radial profiles of voidage, particle dy-
namic pressure and particle velocity. Both the time-average particle
velocity and the concentration-weighted time-average particle velocity
were included in Figure 4-37b, to show the difference between the two.
However, in the wall region, these two average values approach each
other due to high particle concentration, for which the contribution of
the dilute phase to the average particle velocity is negligible. From the
radial profiles of average voidage and particle velocity shown in Fig-
ure 4-37, a cross-sectional average solids flow rate of 70 kg/(s - m?) was
obtained, which is in good agreement with the operation condition of

G, = 62 kg/(s - m?).
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Chapter 5

APPLICATION OF THE
EMMS MODEL

Application of the EMMS model includes two aspects: computation of
flow field and evaluation of fluid-particle contacting in a particle-fluid
two-phase system by using the formulations of the model, and concep-
tual design of reactors by using the basic understanding of particle-fluid
two-phase flow revealed by the model. The merit of the EMMS model
lies in providing quantified analysis of the local meso-scale heterogeneity
and of the global macro-scale heterogeneity of a particle-fluid two-phase
system, thus making possible the specification, selection or realization
of the phase, regime, pattern and region desired.

Due to the recency of the EMMS model, however, its engineering poten-
tial remains yet to be explored, and the present chapter will quote only
a limited number of examples in application.

5.1 Reactor Design

To use the EMMS model in reactor design calls for, first of all, the
specification of the independent parameters and then the provision of a
general guideline for the design procedure.

153
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5.1.1 Reactor Speciﬁcation

The independent parameters which need to be specified at the beginning
involve:

1. Material properties, such as particle diameter, particle density,
fluid density, fluid viscosity, etc.

2. Qperating conditions, such as gas velocity, solids flow rate, etc.

8. Boundary conditions, such as dimension and configuration of the
unit, marimum pressure drop AP,y to be allowed, etc.

5.1.2 Design Procedure

With the above specifications, the flow field of the reactor can be deter-
mined by solving the EMMS model. In principle, radial profiles of all
parameters in both the top dilute region and the bottom dense region
can be computed from Model OR with the identification of the Modes
of operation, FD, PFC/FD and PFC. The general procedure is the fol-
lowing:

1. Determination of the Possible Operating Modes. From the reac-
tor specifications, compute from Model OR, (W )prc and (W )rp, to
identify the possible operating mode in the axial direction according to
the following criteria (see Section 3.6): ’

Mode FD (We)rp < (Wet)pPFo
Mode PFC/FD (W )rp = (Wet)prC

Mode PFC (Ws)rp > (Wat)PFC

2. Radial Profiles of Parameters. While calculating (W )prc and
(W )FD in the above first step, radial profiles of all parameters should
also be determined with respect to all possible operating modes.

3. Justification of the Mode Chosen with Respect to APpax. From
Model OR, also compute the average voidages for Mode FD and Mode
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PFC, Zrp and Zprc, to determine the respective pressure drops in the
axial direction, which should balance the imposed pressures:

(APmp)Fp = (1 — Erp)ppgH
(APimp)prc = (1 — Eprc)ppgH

The value of Epp is subject to the structure of clusters in the FD regime,
which, as discussed in Section 3.3, has not yet been fully understood.
Its two extreme values can be determined with the assumption of either
disappearance of clusters for ideal transport or £, approaching ey for
nonideal transport.

Modes FD and PFC are possible provided APpax > (APmp)Fp and
A Prpax > (APimp )prc respectively. Mode PFC/FD is possible provided

(APimp)FD < APpax < (Alep)PFC
that is,
(1- 5*)png < APpax < (1 —€a)ppgH

In short, the sufficient conditions for the three possible modes in the
axial direction are

Mode FD _ (Wst)rD < (Wst)PFc O Pmax > (APump)FD

Mode PFC/FD (—Wst)FD = (Wst)PFC (Al)imp)FD < APmax
< (ARmp)PFC

Mode PFC (Wst)rp > (Wat)prc  APmax > (APigp)prFc

4. Determination of Inflection Point Z;. For Mode PFC/FD, the in-
flection point Z;, as shown in Figure 5-1, has to be determined for eval-
uating the space fractions of the dilute and the dense regions, and then
the solids inventory in the system could be calculated. Subject to the
specified AP.x and the characteristic curve of the compressor, Z; and



156 Jinghai LI and Mooson KWAUK

the inventory of solids are correlated with each other through the com-
ponent resistances in the circulating loop, as shown in Figure 5-1, which
gives

pp9(1 —ea)(H-Zi))+ (1 —€)Z;

_I- (1 —ea)(H— Zi) + (1 — %) Zi]ppa g
A

/_-\,.

— AP,

]

APn, H H,

] AP,

Figure 5-1 Pressure Balance in a CFB Unit

In addition, operational flexibility should be taken into account in deter-
mining Z; or I to allow a range of operation, especially, the adjustment
through AP, = AP.; + AP, which is mainly affected by the opening of
the solids flow control value and solid flow rate.

The design procedure discussed above is contingent upon the solution
of Model OR which has not yet been achieved at the present stage.
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Another deficiency in the above procedure is the calculation of the tran-
sition zone between the dilute region at the top and the dense region
at the bottom. Special attention is being paid to these two important
aspects in order to make the complete design procedure possible. How-
ever, a simplified approach can be deduced from the above procedure
to determine the flow field of a reactor, as shown in the following section.

5.1.3 Example of Computation of Flow Field

Reactor specifications are (see Figure 5-1)

. Material Properties: particle density pp = 930 kg/m?3
particle diameter d, = 54 um

gas density pr = 1179 kg/m3
gas viscosity ve = 1.6 x 107° m?/s
Operating conditions: gas velocity 2.0 m/s, 4.0 m/s, Up

(to be determined)
particle flow rate G, = 50 kg/m? - s

Boundary conditions: pressure drop APpax = 15000 kg/(m - s2)
unit dimensions H=10m, Hi=7Tm
a=7.85x% 1073 m?
A=1.327x 1072 m?

where APpax is the maximum pressure drop across the unit, which is
dependent on the characteristic curve of the ¢ompressor, the maximum
solids inventory in the system, and AP, = AP,.; + AP, defined in Fig-
ure 5-1, at the specified solids flow rate.

1. Determination of Operating Modes. Without considering radial het-
erogeneity by using Model OR, this section will consider Model LG in-
stead. From Model LG, changes, with changing gas velocity, of (Wg)prc,
and (Wg)rp and of the corresponding eprc and epp can be calculated.
Figure 5-2 shows the computation results, in particular, the the choking
velocity Ug = 3.21 m/s for G5 = 50 kg/(m? - s) at which

(Wst)prc = (Wst)FD
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£(4.0m / 5)=0.987 Idealized FD Regime
1.0 ‘ £° =0.983
— Erpy-s, A
0.9} £,=0.873 7.~ |Non-idealized FD Regime
— KExtreme case with &, = &np)
@« : //
08+62.0m/9)=0774 £~ Eppp_=c,
e )
Eppc
0.7LF
. Ux=321m/s
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3000 .
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/
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/
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W [1/(m’9)]

Figure 5-2 Determination of Operating Modes
and Corresponding €

The calculated parameters for U; = 2.0 m/s, 3.21 m/s and 4.0 m/s,
are listed below:

Ug, m/s (Wx)prc (Wu)FD EPFC E€FD  Eidesl Ea £
2.0 2322 2588 0.769 0.774 0.973 - -
3.21 2810 2810 0.873 0.883 0.983 0.873 0.983
4.0 2317 1785 0.926 0.948 0.987 -— -

where epp is the voidage in the FD regime for nonideal transport for
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which particles still aggregate with €. = £p,¢, and £igear is the voidage
in the FD regime for ideal transport for which particles are discretely
dispersed. Without a full understanding of the flow structure in the
FD regime, the designer has nevertheless to make a choice between erp
and €;4eal- According to the values shown above, the relevant operating
modes are identified as follows

velocity, m/s criteria, J/(m® - s) mode

2.0 (Wae)prc = 2322 < (Wa)Fp = 2588 PFC
(dense only)

3.21 (Wst)prc = 2810 = (Wst)rp = 2810 PFC/FD
{dense and dilute)

4.0 (W )prc = 2317 > (Ws)rp = 1785 FD
(dilute only)

Suppose the designer chose ideal transport for the FD regime, then the
corresponding bed voidages (see top of Figure 5-2) for the above three
cases would be:

velocity, (m/s) voidage for dense region voidage for dilute region

2.0 0.769 ~
3.21 0.873(ea) 0.983(c*)
4.0 - 0.987

The corresponding pressure drops across the unit for these three cases
are

velocity, m/s APimp, kg/(m-s?)
2.0 =(1-&)pp-gH = (1 —0.769) x 930 x 9.8 x 10 = 21042
3.21 > (1~ e*)pp - gH = (1 —0.983) x 930 x 9.8 x 10 = 1549

< (1 —¢a)pp - gH = (1 - 0.873) x 930 x 9.8 x 10 = 11568

4.0 =(1-¢)py-gH = (1 —0.987) x 930 x 9.8 x 10 = 1184
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Because of the constraint AP, < APpax = 15000 kg/ (m-s?), the
operation for Uy = 2.0 m/s and G5 = 50 kg/(m? - s) can not be realized.

To satisfy APmp < APnax, the system can therefore be operated for
both U; = 3.21 m/s and 4.0 m/s. To cover the operational range from
3.21 to 4.0 m/s, the adjustment range of AP, (see Figure 5-1) must be so
wide that it can compensate the difference between AP,ax and APip.
The position of inflection point Z; floats on the value of APF..

2. Ewvaluation of Solids Inventory. Assuming the downcomer (see
Figure 5-1) operates in bubbling fluidization with € = 0.6, the maximum
solids inventory Imax at Ug = 3.21 m/s corresponding to the maximum
height of the point of inflection Z; = 0, can be evaluated:

Tpax= (1—¢€a)pp-H-a+(1-06)p,-Hy-A
= (1-0.769) x 930 x 10 x 7.85 x 1073 + (1 — 0.6) x 930
x7.0 x 1.327 x 1072 = 51.42 kg

The corresponding range of AP, at I,y should be from

(APc)min = _(1 - 5a),0p : gH + (1 - 0°6)pp - ng
= —(1—0.873) x 930 x 9.8 x 10 + (1 — 0.6) x 930
x9.8 X 7.0 = 13945 kg/(m - s?) o

to
(AP )max = —(1—€*)pp-gH + (1 - 0.6)pp - gH:
= —(1-0.983) x 930 x 9.8 x 10 + (1 — 0.6) x 930
x9.8 x 7.0 = 23956 kg/(m - 5?)

The minimum solids inventory Ini, occurs at AP, = 0:

(1—¢e*)pp-Ha+[(1—€*)pp-H+ AP /g]A
= (1~-¢€")pp - H(a+ A)
(1 —0.983) x 930 x 10 x (7.85 x 1073 4+ 1.327 x 1072) = 3.34 kg

I, min

The solids inventory increases from this minimal value toward the max-
imum of 51.42 kg, as the resistance of flow AF, increases.
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<

For U; = 4.0 m/s, the same procedure can be adopted for evaluating
Imax, Imin, APmax and APpiy. This will not be duplicated.

3. Axial Voidage Profile.  Axial voidage profile exists only in Mode
PFC/FD operating at Ug = 3.21 m/s, and it can be evaluated by using Li
and Kwauk’s (1980) model with the above values of €, and €*, according
to which

Z52 = expl— (2 — 2)/Z)

e* —

In consideration of the definition of z, A and Z; in Figure 5-1, the equa-
tion becomes

E(h) —€a

o —2h) exp(—(H ~ h — Z})/Z)] (5.1)

where Zy can be calculated from £* and £, (Li and Kwauk, 1980), and
Z; from pressure balance:

Zo = 500exp[—69(c* — €,)] = 500exp[—69(0.983 — 0.873)] = 0.253 m

- HPp ~g(1— Ea) - APimp
Pp 9(5* — €a)

Z;

If the opening of the solid flow control valve is so adjusted as to give
APy, = 6500 kg/(m - s?), calculation yields Z; = 5.0 m. Substitution
of €,,€*, Zp and Z; into Equation 5-1 gives the axial voidage profile at
Ug = 3.21 m/s as shown in Figure 5-3a.

4. Radial Voidage Profile.  Radial voidage profile can be evaluated
from g(h), calculated from Eq. (5.1), by using Tung’s model:

e(h,v/R) = g(h)[(f/R)2+0-191] r/R<0.75

e(h,7/R) = E(h)[3.62(r/R)°‘47+0.191] r/R > 0.75
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These two correlations define the spatial distribution of particle concen-
tration in the whole unit.

I.O‘b'm
« 0.9f
0.8}
2 11.0
= 10.9w
g
< 0.8
<
1.0 3
0.9+
w
0.8t
0.7
Q {
0.8 0.9 1.0 1.0 0 1.0
———¢ r/ R r/ R

Figure 5-3 Calculated Voidage Distribution for System FCC/air
at G5 = 50 kg/(m? - s), and Uy = 3.21 m/s
a — axial; b — radial (1. top dilute region;
2. transition region; 3. dense region)

Figure 5-3b shows the calculated radial voidage profiles for Uy = 3.21 m/s
at three typical positions: the top dilute region, the transition region and
the bottom dense region. For U, = 4 m/s, radial voidage profiles at any
cross-section can be expressed as

e(r/R) = 0.9871("/R)?+0.191] r/R < 0.75

e(r/R) = 0.98713-62(r/R)**7+0.191] r/R>0.75

Further efforts are needed to develop a mathematical model for the tran-
sition section to replace the empirical correlations used in the above cal-
culation, and to understand the flow structure in the dilute transport
regime for considering the real nonidealized case.
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5.2 Evaluation of Particle-Fluid Contacting

The multi-scale aspect of the EMMS model makes possible the approx-
imate evaluation of particle-fluid contacting in particle-fluid flow.

5.2.1 Drag Coefficient and Slip Velocity

The eight variables in Model LG are correlated with the average voidage
€, gas velocity Ug and solids flow rate G;:

e=er(1-f)+ecf
Ug=Us(1— f) + Ucf

Gs/pp = Udf(]- - f) +Ugcf

For an average particle, we have

wdS — md?: pUZ2
P, g = P B7s
6 Pp- g Cpb 4 2
that is,
7 4dpppg

D= :
3p(Ug ~ 5iisyy)?

However, such a global correlation is not sufficient for evaluating G/S
interaction in the system due to structural difference between the two
phases. It is necessary to analyze particle-fluid interaction at a micro
scale in both phases and the interaction between the two phases. From
Section 2.1, drag coefficients in the three different phases are

8Fdense
md2pe(U, — hese)?

dense phase : Cpe =
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8F dilute

" wd2p(Us — %‘;‘ff)z

dilute phase : Cpt

— S-Finter
wl2pp(Us — §45)2(1 - £)?

1—ec

inter phase: Cp;

By using the EMMS model, all the parameters involved in the above
correlations can thus be calculated.

Figure 5-4 supplements Figure 3-9 by comparing various slip veloci-
ties and drag coefficients in the different phases for system FCC/air
(dp = 54 pm, pp = 930 kg/m3) at Gs = 50 kg/(m? - s) calculated from
Model LG, showing dramatic difference between the dense phase and
the dilute phase not only for slip velocity but also for drag coefficient.

At minimum fluidization, all drag coefficients are high because of the low
slip velocity (Us)mt at this state. Drag coefficient Cp, in the dense phase
becomes even higher with increasing U, due to decreasing slip velocity
Usc in this phase. However, slip velocity between the two phases Uy is
much higher than Uy, and increases with increasing Uy, leading to low
drag efficient Cp;. Both slip velocity and drag coeflicient in the dilute
phase are constant in the fluidization regime, but make jump changes at
Upt corresponding to choking, and then gradually approach U; and Cp,
respectively for the single particle with increasing Ug. The global av-
erage drag coefficient and slip velocity change differently from all other
phase-related terms, and are, therefore, not sufficient for characterizing
particle-fluid contacting in the system. In fact, we see that the global
average drag coefficient Cp reaches quite low values, even lower than
0.1 at high fluid velocity Ug, which is therefore not reasonable.

From the above analysis, we know that multi-scale analysis is essential
for evaluating particle-fluid contacting in heterogeneous particle-fluid
systems, while the analysis based on the global average is usually insuf-
ficient. Heterogeneity not only on local scale but also on overall scale
should be the main research focus in this field.
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Figure 5-4 Dependencies of Slip Velocities and
Drag Coefficients on Gas Velocity
in Different Phases

5.2.2 Contacting Intensity
Mass-Specific Intensity

To elucidate further the mechanism of local heterogeneity as evidenced
by the division of particle-fluid flow into the two phases, a term called
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mass-specific intensity of particle-fluid interaction I, is proposed as fol-
lows:

— Nst
ngf

where N represents particle-fluid contacting per unit mass of particles,
and Ugpsr represents the mass flow rate of the fluid. The quantity I,
therefore, provides a criterion for evaluating particle-fluid contacting
between unit mass of fluid and unit mass of particles in a unit cross-
sectional area of the system.

For the dense and the dilute phases, the corresponding mass-specific
intensities of particle-fluid interaction are

(Nst)dense
I ) dense = —t—
( )d se Ucfpf
(I )d‘l te = (Nst)dilute + (Nst)inter
m/dilute =

Ue(1 - fpx

Figure 5-5a shows that (I )dense 1s much higher than (I )dilute, implying
that a great part of the total weight of the solid particles (1 — €)ppg is
born mainly by a small portion of the upflowing fluid in the dense phase
U.f/Ug, shown as APgensef/(1 — €)ppg in Figure 5-5b, while the ma-
jor portion of the fluid flows through the dilute phase with hardly any
interaction with particles in the dense phase. In uniform suspension,
from definition Ny = N1 = Ugg(pp — pt)/Pp; Im reaches the maximum
value of f-%_—piﬁ;. From Figure 5-5a, we can see that the formation of the
two-phase heterogeneous structure leads to a dramatic decrease of the
mass-specific intensity of particle-fluid interaction. Although its value
in the dense phase is close to that in the uniform suspension, its contri-
bution to the average intensity is not much due to the small fluid flow,
U.f/Upg, in the dense phase, as can be seen in 5-5b. Figure 5-5a shows
that the local average mass-specific intensity of particle-fluid interaction
I, is critically dependent on flow regimes. Starting from incipient flu-
idizing, I, drops sharply with bubbling, then increases with Uy, until at
the choking velocity Upg, it jumps to its maximum of uﬂ;, meaning

P
that maximal mass-specific interaction between the fluid and particles
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occurs in the state of uniform structure.
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Figure 5-5 Mass-Specific Intensity of G/S Interaction in
Different Phases (FCC/air: G, = 50 kg/(m? -s))

Therefore, we define relative contacting intensity

1 Po  Pf
I' = 2 = LB RN §
" (Im)max Pp— P g

to evaluate the role of heterogeneity in reducing particle-fluid contacting
intensity. The value of I}, changes from zero to a maximum of unity in



168 Jinghai LI and Mooson KWAUK

the state of uniform structure.
In considering particle-fluid contacting for any global systems the local

values of I} (h,r) need to be averaged:

I = 1 .
fOH foR[l_E(hyr)]PpUs(h,r)pf.rd.,.dh

JE JRIL(h,r)[1 — (R, T))-ppUg(h,)pt - rdrdh

For the CFB system shown in Figure 5-6a, such average could be ap-
proximated by

7 (1= ZilT)" + (1 — ea) (H = Zi)(I)e
m = 1-e"Zi+ (1 -e.)(H - Z)

In principle, I’ can be optimized with respect to operating conditions,
both radially and axially, as shown in Figure 5-6.
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Figure 5-6 Distribution of Interaction Intensity
in a Circulating Fluidized Bed
a —— axial; b radial
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Volume-Specific Intensity

In addition to mass-specific intensity of particle-fluid interaction, volume-
specific intensity I, is an alternate criterion for evaluating particle-fluid
contacting. From Section 2.2, W is itself a measure of volume-specific
intensity of particle-fluid interaction, that is,

I, = JVS(:(1 - €)Pp = W

Figure 5-7 maps the variation of this volume-specific intensity with gas
velocity Ug and solids flow rate G;. The subfigure at the top shows
the shadowed cross-section for G, = 80 kg/(m? -s). Maximal W cor-
responds to the most efficient particle-fluid contacting per unit volume,
and Wy should be integrated volumetrically to yield the global effec-
tiveness of particle-fluid contacting in a reactor.
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Figure 5-7 Dependence of Volumetric Intensity of Particle-Fluid
Interaction on Operating Conditions (FCC/air)
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The above considerations seem to imply that for efficient particle-fluid
contacting in a reactor of a limited volume, high I, should be chosen,
while if the amount of particles in a reactor is limited, the system should
be operated at as high a value of I, as possible.

Mass or heat transfer between fluid and particles is related not only to
particle-fluid contacting, but also to the exchange between the dense
and the dilute phases. Therefore, further efforts are needed to unravel
how the latter effect, which is characterized by repeated dissolution and
reformation of particle aggregates, should be incorporated in order to
evaluate the overall mass or heat transfer process.

Figure 5-8 shows a comparison between Iy, I, and U,/e, to give some
insight into G/S contacting. Slip velocity with which I, and I, change
differently does not appear to be a well-suited parameter for character-
izing G/S contacting. In theory, it appears that the best G/S contacting
prevails only when both I, and I, reach maxima simultaneously, that
is, in a uniform dense state. Therefore, G/S contacting should be op-
timized by balancing I, and I,, according to the characteristics of the
process.
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Figure 5-8 Dependence of Iy, I, and U, /e on Gas
Velocity (FCC/air: G = 50 kg/(m? :s))



Particle-Fluid Two-Phase Flow

171

6000} 3.0f
5200|

E N

o, 4400 g

I ;

Iy )

= 3600

7 S
2800}
2000t

Figure 5-9 Radial Distributions of I,, I, and Us/e Calculated

from Experimental Data of Bader et al. (1988)

A AN A
V¥ TN
A0 OO
VIIT' T’!\‘{ EEA
R 0O R R 0 R R 0 R
Concurrent Countercurrent Concurrent
\Upﬂo.w Downflow Downflow

Drag

Wall Friction

Gravity

Total
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With the above discussion, we are now in a position to re-examine the
radial heterogeneity shown in Figure 3-26. Figure 5-9 compares radial
distributions of I, I, and Ug/e, showing that maximum slip velocity
does not correspond to maxima for I, and Iy, and that the most ef-
ficient G/S contacting, prevailing in the core region for this case, does
not correspond to the highest slip velocity. The small peak in I, near
the wall region is attributed to local countercurrent flow.

Figure 5-10 (Yan, 1993) shows a qualitative comparison of drag force,
wall friction and gravity between different types of low under the as-
sumption of discretely dispersed particles in the fluid. For countercur-
rent downflow, wall friction counteracts drag force, resulting in rela-
tively uniform radial distribution of the total force, and hence, relatively
uniform distribution of particles, while for both concurrent upflow and
downflow wall friction reinforces drag force, therefore, intensifying radial
heterogeneity.

5.3 Reactor Conceptualization

5.3.1 Voidage Redistribution

- As analyzed in Chapter 3 and demonstrated in Chapter 4, the S-shaped
axial voidage profile is typical of CFB, which consists of a top dilute
region with few particles, and a bottom dense region with extensive
backmixing of both particles and gas. Such characteristics often can-
not satisfy the demand of some processes, for example, fluid catalyst
cracking, which require both high concentration of particles and low
backmixing of gas for high yield and good selectivity.

To reduce backmixing in the dense region, baffles were used for arrest-
ing the downflow of particles in the wall region (Zheng and Tung, 1990).
This, however, led to decrease in solids concentration, which is by no
means desirable, and the operation with both high concentration of par-
ticles and low backmixing is still difficult to realize. On the basis of
the EMMS model, the analysis of the axial fluid dynamics of CFB has
resulted in the concept of axial redistribution of voidage profile by ring
internals (Zheng et al., 1991) to solve the above problem.
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An S-shaped voidage profile satisfies the approximate static pressure
balance:

(1—e"pp-9Zi+ (1 —€a)ppg(H — Zi) = APymp
that is

— pr : g(l — Ea) - A}Dimp
(e* —€a)ppg

Zi

The ring internal was so designed that in its influence region, the length
of which is AZ, the voidage is perceptibly raised from ¢, to €j; as shown
in Figure 5-11a. Keeping the imposed pressure drop A P, constant, the
creation of this high voidage zone AZ results in a rise of the inflection
point Z; upward to Z expressed as

_ [HPp . g(l - ea) — APirnp] - AZPp ) g(Ein — Ea.)

Zt
1 *
(e* —€a)op - g
£y
£ 3
e’ 2 Z
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Figure 5-11 Effect of Ring Internals on Axial Voidage Profiles in
Fast Fluidization (Zheng et al., 1991)
a — conceptual analysis;
b — experiments with two rings

that is, the ring internal diverts a part of the dilute phase space at the
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top to the influence zone within the dense phase region, while the to-
tal inventory of solids remains the same, as verified by experiments in
Figure 5-11b for two such rings. Obviously, for suppressing gas back-
mixing in the dense region without changing the solids inventory in the
system, a series of internals can be inserted into the bed for apportion-

ing the dilute region at the top to their influence zones between dense
" layers to form a multi-layer structure with alternating dense and dilute
zones. Such a solids redistribution is characterized by high concentra-
tion of particles and low gas backmixing in the whole system, without
much affecting, however, local mixing. For this solids redistribution, the
minimal number of internals without mutual overlapping is

N=2/(Zi - Z})

On the basis of the above analysis, Zheng et al., (1992) conducted exper-
iments in a fluidized bed of 90mm 1.D. to measure both axial and radial
voidage profiles with different number of internals as shown in Figure
5-11b and Figure 5-12, and to evaluate the backmixing of particles in
the system by using tracer particles as shown in Figure 5-13. Their re-
sults indicate a considerable suppression of backmixing by segmenting
the solids inventory in the axial direction.
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Figure 5-12 Effect of Ring Internals on Radial Voidage
Profiles in Fast Fluidized Beds
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Figure 5-13 Ring Internal Suppresses Solids Backmixing

5.3.2 Wall Reconfiguration

The EMMS model suggests that the heterogeneous structure in parti-
cle fluid two-phase flow, which is attributed to minimization of energy
consumption for suspending and transporting unit mass of particles,
might be suppressed by hindering such energy minimization. With such
a consideration, Bie et al. (1991) designed a CFB riser consisting of
alternately contracting and expanding sections, for flattening the radial
distribution of particles.

The wall of a traditional CFB unit plays the role of minimizing N by
forming a dense annular region of low Ny, thus causing radial hetero-
geneity. Such a wall effect could be suppressed by alternately enlarging

and shrinking the cross-section of the unit, as shown in Figure 5-14a
(Bie et al., 1992).
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In the contracting sections, the wall forces the fluid and particles to
move inward and against their inherent tendencies, thus, preventing the
formation of the dense annular region. The expanding sections serve to
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Figure 5-15 Changes of Radial Voidage Profiles in Different
Cross-Sections with Solids Flow Rate
(e #52 mm and ©® ¢$99 mm for multiple contracting-
expanding tube; o $90 mm for straight tube)

detach the wall from the fluid and the particles, thus preventing ra-
dial heterogeneity. The alternate changes in cross-section prove to be
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quite effective in maintaining a more uniform structure along the height
of the unit. At an expansion the particles can not follow the increas-
ing cross-section due to their inertia, and move straight upward. Be-
fore they lose their inertia and diffuse toward the wall, they meet the
next contracting section and are centralized once again by the wall.
Therefore, a periodic gas layer forms between the G/S suspension and
the wall, as shown in Figure 5-14b. For comparison with the tradi-
tional straight tube riser, experiments were conducted with FCC par-
ticles (pp = 925.9 kg/m® d, = 54 um) in a riser consisting of two
sections, a top section with a straight tube of 90 mm ID. and a bottom
section with multiple-contracting-expanding subsections with a pitch of
130 mm, minimum diameter of 52 mm and maximum diameter of 99
mm, as shown in Figure 5-14a. '

An optical fiber probe was used for measuring radial particle concen-
tration profiles in these two sections, the results of which are shown in
Figure 5-14c for the bottom multiple-contracting-expanding section and
Figure 5-14d for the top straight-tube section. It can be seen that the ra-
dial heterogeneity is considerably suppressed in the multiple-contracting-
expanding section, with hardly any particles between the wall and the
G/S suspension in the expanding section.

Figure 5-15 shows the change of radial particle concentration profile with
increasing solid flow rate for both the traditional straight tube and the
proposed multiple contracting-expanding tube, illustrating further the
role of alternate contraction and expansion.

5.4 Further Development

The EMMS model contributes toward a comprehensive understanding
of particle-fluid two-phase flow though its application in engineering yet
awaits further exploration. A few remarks seem to be in order as to
what is needed and what is possible.



Particle-Fluid Two-Phase Flow 179

5.4.1 Pragmatization of the EMMS Model
Complete Solution of Model OR

In Section 3.6, Model OR was solved by simplifying it to Model KR
which calculates radial profiles but only with relevant experimental data.
For a complete solution, it is highly desirable to transform the two-fold
optimization problem of Model OR into a common single-fold optimiza-
tion problem. Also, in Model OR, local fluid dynamics is described by a
submodel, Model LR(r). To resolve the complexity of Model OR involv-
ing local optimization and overall optimization, Xu (1993) simplified the
model by introducing two innovations:

1. Instead of solving Model OR directly, Model LR (r) is replaced by a
set of equations consisting of ONy /0zi(i = 1,2, ...8) and the origi-
nal nine constraints as in Model LR, and the two-fold optimization
problem is thus converted into a single-fold problem.

2. Proper forms of initial radial profiles of both gas and solids velocity
are assumed at the beginning of an iterative process with adjustable
parameters represented by vectors A and B respectively. -

Model OR is thereby reduced to a common optimization problem with
respect to A and B , and can thus be solved in the same way as Model

LG.

Combination of the EMMS Model with the Pseudo-Fluid Model

Since the pseudo-fluid models do not take into account the heterogeneous
structure consisting of a dense phase and a dilute phase, differences. of
particle-fluid interactions in the two phases can not be discerned. There-
fore, it is difficult to analyze local heterogeneous structure and regime
transition though the appearance of bubbles or clusters in fluidized bed
can be predicted (Ding and Gidaspow, 1990). However, the pseudo-fluid
models are rigorously formulated, and can be easily resolved to describe
the time- and space-dependent behaviors of particle-luid systems. On
the contrary, the EMMS model resolves a global system into two in-
terdependent subsystems, the dense phase and the dilute phase, and
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multi-scale analysis and energy minimization serve to quantify such a
heterogeneous structure. However, the simplifications adopted in this
model have precluded its use from time-dependent behavior. Therefore,
combination of the EMMS model and the pseudo-fluid model may yield
a comprehensive understanding of both the heterogeneous structure and
the time-dependent behavior of particle-fluid two-phase flow.

According to such a consideration, Xu et al.(1993) proposed a integrated
model’in which the pseudo-fluid model was used for formulating the fluid
dynamics of both the dilute and the dense phase, while the EMMS model
for determining inter-phase parameters involved in the interaction be-
tween the two phases. The solution of their model also indicated the
coexistence of a dilute phase with voidage ef = 1.0 and a dense phase

_with voidage ¢ — €. Such an approach seems to be promising though
further efforts are still needed. '

Particle Aggregation in Dilute Transport Regime

Between the two extreme cases of cluster structure in the FD regime—
ideal transport with uniform and discrete particles dispersion and non-
ideal transport with “small” clusters—an adequate correlation is needed
for particle aggregation on the basis of interparticle forces, particle-fluid
interaction and the effect of turbulence. Computer-aided experiment is
now under way (Chen and Ge, 1993) for studying particle aggregation
in the FD regime by means of graphical simulation.

Consideration of Dynamic Behavior

The global particle-fluid two-phase flow involves both ordered and dis-
ordered processes. The EMMS model is mainly devoted to the ordered
aspects of the system, and needs to be supplemented by exploring an
approach with respect to the alternate dissolution and reformation of
particle clusters, which account for the greater part of the dissipated
energy Ny.
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5.4.2 Application of EMMS Modeling in Other Processes

The methodology of the EMMS model is characterized by resolution of
a global heterogeneous system into particulate subsystems and partition
of the total non-extremal energy into two extremal components. Such a
methodology is considered to be effective for analyzing other heteroge-
neous systems.

Heat Transfer in Heterogeneous Media

Heat transfer in heterogeneous materials is very similar to particle-fluid
two-phase flow with equivalence of pressure to temperature, fluid ve-
locity to heat flux, and particle-fluid interaction to heat resistance. As
suggested by Ozisik (1989) during his discussion with one of the authors
on the EMMS model, if a material consists of two different compo-
nents, with one distributed in the other in the form of discrete parti-
cles, the discrete material can be considered to correspond to clusters
in particle-fluid systems. Figure 5-16a shows a mixed material consist-
ing of two components having different heat! transfer coefficients A; and
A2. If Ay # X3, the distribution of heat flux in this material is qualita-
tively shown in Figure 5-16a. Such a process is expected to satisfy the
minimum heat resistance or the maximum heat flux with constraints
governed by heat transfer. In this system, if A\; and/or Ay is subject
to'a temperature change, a phenomenon similar to “choking” in fluid-
particle systems may occur. For example, if the inversion from A1 < Az
to A1 > A2 takes place in the prevailing temperature range, the distri-
bution of heat flux will change from the pattern of Figure 5-16a to that
shown in Figure 5-16b. A detailed analysis of this system is of engineer-
ing significance.

Three Phase Fluidization

Three phase fluidization can be referred to as.a compound fluidization
system consisting of a liquid/solid subsystem in which the liquid flu-
idizes the particles, a gas subsystem in which gas flows in the form of
bubbles, and an inter phase in which gas flows through the L/S mix-
ture, as shown in Figure 5-17. It appears thaﬁ each of these three phases
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could be analyzed individually with the proposed EMMS model. What
is needed to be further analyzed is how to integrate these three separate
phases into a global model.
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Figure 5-16 Showing Heat Transfer in Heterogeneous Materials
a — A\ = constant, Ay > Ag;
b— A= f(T)
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Figure 5-17 Resolution of L/G/S Three Phase Fluidization
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ACRONYM

FD  fluid-dominating

PD  particle-dominating

PFC particle-fluid-compromising
LG  local general

LR  local radial

OR  overall radial

KR  K-radial

NOTATION

A parameter vector to be optimized

A cross-sectional area of downcomer, [m?]

a cross-sectional area of riser, [m?]

C tracer concentration [%)

Co C at injection point [%)]

Cp drag coeflicient of a single particle in suspension
Cp, drag coeflicient of a single particle

63 average Cp with respect to d

d hydrodynamic mean particle diameter, [m]
d, volume to surface mean diameter, [m]

ds unit diameter, [m]

dy particle diameter, [m]

ds optical fiber diameter, [m]

de fiber cladding diameter, [m]

D, axial diffusion coefficient, [m?/s]

D, radial diffusion coefficient, [m?/s]

f volume fraction of dense phase

f(X) objective function in general

F;(X) equations for mass and momentum conservation

F force acting on each particle or cluster, [(kg - m)/s?
or objective function in GRG-2
Is fluid-particle interaction frequency, [s™}]

fp particle-particle interaction frequency, [s ]
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K(r)
1b
L(X)

NC
NE
NL
NN

AP
APimp
APrax

gravity acceleration, [m/s?]

constraint function

solids flow rate, [kg/(m?2.s)]

riser height, [m] '

downcomer height, [m]

height coordinate, [m]

solids inventory in a unit, [kg]

mass-specific intensity of particle-fluid interaction, [J/kg?]
dimensionless mass-specific intensity of particle-fluid interaction
volume-specific intensity of particle-fluid interaction, [J/(s - m?)]
factor :

saturation carrying capacity, (kg/(m? - s)]

radial heterogeneity factor

variable vector for upper limit of X

Lagrange’s function

equivalent diameter of particle clusters, [m]

or distance between optical probe tip and reflector, [m)]
particle or cluster number in unit volume

energy consumption with respect to unit mass, [J/(s.kg)]

or Total number of particle fractions

total number of constraints

number of equality constraints

number of linear inequality constraints

number of variables

particle number for fraction ¢

pressure gradient or total force in unit volume, [kg/(m? - s2)]
imposed pressure drop across a unit, [kg/(m - s?)]

maximum of APy, [kg/(m - s?)]

pressure drop AFP;; + AP, defined as Figure 5-1, [kg/(m - 52)]
radius of unit [m)]

Reynolds number

Reynolds number corresponding to velocity fluctuation
auto-correlation coefficient

cross-correlation coefficient

radial coordinate, [m]

slack variable

time interval, [s]; or temperature, [K]

time, [s]

Lagrange’s time constant, [s]
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ub variable vector for upper limit of X

U, superficial gas velocity in dense phase, [m/s]
Ug superficial solid velocity, [m/s]

Us superficial gas velocity in dilute phase, [m/s]
Ug superficial gas velocity, {m/s]

Us slip velocity, [m/s]

U terminal velocity of particles, [m/s]

Usui minimum Uy for uniform suspension, [m/s]
Up real solid velocity, [m/s]

Uy average solid velocity, [m/s]

ug real fluid velocity

Usg real slip velocity

(u?)7  fluctuation of fluid velocity, [m/s]
(u2)% fluctuation of solid velocity, [m/s]

u“P friction velocity at the wall, [m/s]

w energy consumption with respect to unit volume, [J/(m3 - s)]

X variable vector

XgB basic variable vector

XNB nonbasic variable vector

z; mass fraction of particle fraction i

X1,X2 see definition in Figure 4-5

Y average output of optical probe

z see definition in Figure 5-1, [m]

Z; inflection point of axial voidage profile, [m)]

z; Z; after inserting one ring internal, [m]

AZ height of affecting zone by a single ring, [m]
Subscript

a bottom dense region

c or dense dense phase

d dissipation, particle

f or dilute dilute phase, fluid

i or inter inter phase

min minimum

mf minimum fluidization
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minimum bubbling
maximum

value for choking point
particles

suspension

suspension and transport
transport

total

. fluid-dominating regime

particle-fluid-compromising regime
top dilute region
dimensionless parameter

Greek letters

RURG I oY

m

max

-,

€T T >>D D

crossed angle between the incident fiber and the receiving fiber
distance between two fibers, [m]

local average voidage

average voidage in the dilute region at the top in

real case with the assumption of the existence of clusters.
maximum voidage for occurrence of clusters

maximum incident angle of optical fiber

density, [kg/m?3]

Lagrange’s multiplier

thermal conductivity, [W/m.K]

kinematic viscosity, [m?/s]

viscosity, [kg/(m - s)]

angle factor of incident fiber to receiving fiber

shape factor of particles

Overline

— time average or cross-sectional average
= global average over the whole unit
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